↩ Accueil

Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
Aujourd’hui — 30 janvier 20256.5 📰 Sciences English

Mark Thomson looks to the future of CERN and particle physics

30 janvier 2025 à 15:27

This episode of the Physics World Weekly podcast features Mark Thomson, who will become the next director-general of CERN in January 2026. In a conversation with Physics World’s Michael Banks, Thomson shares his vision of the future of the world’s preeminent particle physics lab, which is home to the Large Hadron Collider (LHC).

They chat about the upcoming high-luminosity upgrade to the LHC (HL-LHC), which will be completed in 2030. The interview explores long-term strategies for particle physics research and the challenges of managing large international scientific organizations. Thomson also looks back on his career in particle physics and his involvement with some of the field’s biggest experiments.

 

 

This podcast is supported by Atlas Technologies, specialists in custom aluminium and titanium vacuum chambers as well as bonded bimetal flanges and fittings used everywhere from physics labs to semiconductor fabs.

The post Mark Thomson looks to the future of CERN and particle physics appeared first on Physics World.

Filter inspired by deep-sea sponge cleans up oil spills

Par : No Author
30 janvier 2025 à 14:00

Oil spills can pollute large volumes of surrounding water – thousands of times greater than the spill itself – causing long-term economic, environmental, social and ecological damage. Effective methods for in situ capture of spilled oil are thus essential to minimize contamination from such disasters.

Many oil spill cleanup technologies, however, exhibit poor hydrodynamic stability under complex flow conditions, which leads to poor oil-capture efficiency. To address this shortfall, researchers from Harbin Institute of Technology in China have come up with a new approach to oil cleanup using a vortex-anchored filter (VAF).

“Since the 1979 Atlantic Empress disaster, interception and adsorption have been the primary methods for oil spill recovery, but these are sensitive to water-flow fluctuation,” explains lead author Shijie You. Oil-in-water emulsions from leaking pipelines and offshore industrial discharge are particularly challenging, says You, adding that “these problems inspire us to consider how we can address hydrodynamic stability of oil-capture devices under turbulent conditions”.

Inspired by the natural world

You and colleagues believe that the answers to oil spill challenges could come from nature – arguably the world’s greatest scientist. They found that the deep-sea glass sponge E. aspergillum, which lives at depths of up to 1000 m in the Pacific Ocean, has an excellent ability to filter feed with a high effectiveness, selectivity and robustness, and that its food particles share similarities with oil droplets.

The anatomical structure of E. aspergillum – also known as Venus’ flower basket – provided inspiration for the researchers to design their VAF. By mimicking the skeletal architecture and filter feeding patterns of the sponge, they created a filter that exhibited a high mass transfer and hydrodynamic stability in cleaning up oil spills under turbulent flow.

“The E. aspergillum has a multilayered skeleton–flagellum architecture, which creates 3D streamlines with frequent collision, deflection, convergence and separation,” explains You. “This can dissipate macro-scale turbulent flows into small-scale swirling flow patterns called low-speed vortical flows within the body cavity, which reduces hydrodynamic load and enhances interfacial mass transfer.”

For the sponges, this allows them to maintain a high mechanical stability while absorbing nutrients from the water. The same principles can be applied to synthetic materials for cleaning up oil spills.

Design of the vortex-anchored filter
VAF design Skeletal motif of E. aspergillum and (right column) front and top views of the VAF with a bio-inspired hollow cylinder skeleton and flagellum adsorbent. (Courtesy: Y Yu et al. Nat. Commun. 10.1038/s41467-024-55587-y)

The VAF is a synthetic form of the sponge’s architecture and, according to You, “is capable of transferring kinematic energy from an external water flow into multiple small-scale low-speed vortical flows within the body cavity to enhance hydrodynamic stability and oil capture efficiency”.

The tubular outer skeleton of the VAF comprises a helical ridge and chequerboard lattice. It is this skeleton that creates a slow vortex field inside the cavity and enables mass transfer of oil during the filtering process. Once the oil has been forced into the filter, the internal area – composed of flagellum-shaped adsorbent materials – provides a large interfacial area for oil adsorption.

Using the VAF to clean up oil spills

The researchers used their nature-inspired VAF to clean up oil spills under complex hydrodynamic conditions. You states that “the VAF can retain the external turbulent-flow kinetic energy in the low-speed vortical flows – with a small Kolmogorov microscale (85 µm) [the size of the smallest eddy in a turbulent flow] – inside the cavity of the skeleton, leading to enhanced interfacial mass transfer and residence time”.

“This led to an improvement in the hydrodynamic stability of the filter compared to other approaches by reducing the Reynolds stresses in nearly quiescent wake flows,” You explains. The filter was also highly resistant to bending stresses caused at the boundary of the filter when trying separate viscous fluids. When put into practice, the VAF was able to capture more than 97% of floating, underwater and emulsified oils, even under strong turbulent flow.

When asked how the researchers plan to improve the filter further, You tells Physics World that they “will integrate the VAF with photothermal, electrothermal and electrochemical modules for environmental remediation and resource recovery”.

“We look forward to applying VAF-based technologies to solve sea pollution problems with a filter that has an outstanding flexibility and adaptability, easy-to-handle operability and scalability, environmental compatibility and life-cycle sustainability,” says You.

The research is published in Nature Communications.

The post Filter inspired by deep-sea sponge cleans up oil spills appeared first on Physics World.

Anomalous Hall crystal made from twisted graphene

Par : No Author
30 janvier 2025 à 10:25

A topological electronic crystal (TEC) in which the quantum Hall effect emerges without the need for an external magnetic field has been unveiled by an international team of physicists. Led by Josh Folk at the University of British Columbia, the group observed the effect in a stack of bilayer and trilayer graphene that is twisted at a specific angle.

In a classical electrical conductor, the Hall voltage and its associated resistance appear perpendicular both to the direction of an applied electrical current and an applied magnetic field. A similar effect is also seen in 2D electron systems that have been cooled to ultra-low temperatures. But in this case, the Hall resistance becomes quantized in discrete steps.

This quantum Hall effect can emerge in electronic crystals, also known as Wigner crystals. These are arrays of electrons that are held in place by their mutual repulsion. Some researchers have considered the possibility of a similar effect occurring in structures called TECs, but without an applied magnetic field. This is called the “quantum anomalous Hall effect”.

Anomalous Hall crystal

“Several theory groups have speculated that analogues of these structures could emerge in quantized anomalous Hall systems, giving rise to a type of TEC termed an ‘anomalous Hall crystal’,” Folk explains. “This structure would be insulating, due to a frozen-in electronic ordering in its interior, with dissipation-free currents along the boundary.”

For Folk’s team, the possibility of anomalous hall crystals emerging in real systems was not the original focus of their research. Initially, a team at the University of Washington had aimed to investigate the diverse phenomena that emerge when two or more flakes of graphene are stacked on top of each other, and twisted relative to each other at different angles

While many interesting behaviours emerged from these structures, one particular stack caught the attention of Washington’s Dacen Waters, which inspired his team to get in touch with Folk and his colleagues in British Columbia.

In a vast majority of cases, the twisted structures studied by the team had moiré patterns that were very disordered. Moiré patterns occur when two lattices are overlaid and rotated relative to each other. Yet out of tens of thousands of permutations of twisted graphene stacks, one structure appeared to be different.

Exceptionally low levels of disorder

“One of the stacks seemed to have exceptionally low levels of disorder,” Folk describes. “Waters shared that one with our group to explore in our dilution refrigerator, where we have lots of experience measuring subtle magnetic effects that appear at a small fraction of a degree above absolute zero.”

As they studied this highly ordered structure, the team found that its moiré pattern helped to modulate the system’s electronic properties, allowing a TEC to emerge.

“We observed the first clear example of a TEC, in a device made up of bilayer graphene stacked atop trilayer graphene with a small, 1.5° twist,” Folk explains. “The underlying topology of the electronic system, combined with strong electron-electron interactions, provide the essential ingredients for the crystal formation.”

After decades of theoretical speculation, Folk, Waters and colleagues have identified an anomalous Hall crystal, where the quantum Hall effect emerges from an in-built electronic structure, rather than an applied magnetic field.

Beyond confirming the theoretical possibility of TECs, the researchers are hopeful that their results could lay the groundwork for a variety of novel lines of research.

“One of the most exciting long-term directions this work may lead is that the TEC by itself – or perhaps a TEC coupled to a nearby superconductor – may host new kinds of particles,” Folk says. “These would be built out of the ‘normal’ electrons in the TEC, but totally unlike them in many ways: such as their fractional charge, and properties that would make them promising as topological qubits.”

The research is described in Nature.

The post Anomalous Hall crystal made from twisted graphene appeared first on Physics World.

Hier — 29 janvier 20256.5 📰 Sciences English

Imaging reveals how microplastics may harm the brain

Par : Tami Freeman
29 janvier 2025 à 13:00

Pollution from microplastics – small plastic particles less than 5 mm in size – poses an ongoing threat to human health. Independent studies have found microplastics in human tissues and within the bloodstream. And as blood circulates throughout the body and through vital organs, these microplastics reach can critical regions and lead to tissue dysfunction and disease. Microplastics can also cause functional irregularities in the brain, but exactly how they exert neurotoxic effects remains unclear.

A research collaboration headed up at the Chinese Research Academy of Environmental Sciences and Peking University has shed light on this conundrum. In a series of cerebral imaging studies reported in Science Advances, the researchers tracked the progression of fluorescent microplastics through the brains of mice. They found that microplastics entering the bloodstream become engulfed by immune cells, which then obstruct blood vessels in the brain and cause neurobehavioral abnormalities.

“Understanding the presence and the state of microplastics in the blood is crucial. Therefore, it is essential to develop methods for detecting microplastics within the bloodstream,” explains principal investigator Haipeng Huang from Peking University. “We focused on the brain due to its critical importance: if microplastics induce lesions in this region, it could have a profound impact on the entire body. Our experimental technology enables us to observe the blood vessels within the brain and detect microplastics present in these vessels.”

In vivo imaging

Huang and colleagues developed a microplastics imaging system by integrating a two-photon microscopy system with fluorescent plastic particles and demonstrated that it could image brain blood vessels in awake mice. They then fed five mice with water containing 5-µm diameter fluorescent microplastics. After a couple of hours, fluorescence images revealed microplastics within the animals’ cerebral vessels.

The microplastic flash
Lightening bolt The “MP-flash” observed as two plastic particles rapidly fly through the cerebral blood vessels. (Courtesy: Haipeng Huang)

As they move through rapidly flowing blood, the microplastics generate a fluorescence signal resembling a lightning bolt, which the researchers call a “microplastic flash” (MP-flash). This MP-flash was observed in four of the mice, with the entire MP-flash trajectory captured in a single imaging frame of less than 208 ms.

Three hours after administering the microplastics, the researchers observed fluorescent cells in the bloodstream. The signals from these cells were of comparable intensity to the MP-flash signal, suggesting that the cells had engulfed microplastics in the blood to create microplastic-labelled cells (MPL-cells). The team note that the microplastics did not directly attach to the vessel wall or cross into brain tissue.

To test this idea further, the researchers injected microplastics directly into the bloodstream of the mice. Within minutes, they saw the MP-Flash signal in the brain’s blood vessels, and roughly 6 min later MPL-cells appeared. No fluorescent cells were seen in non-treated mice. Flow cytometry of mouse blood after microplastics injection revealed that the MPL-cells, which were around 21 µm in dimeter, were immune cells, mostly neutrophils and macrophages.

Tracking these MPL-cells revealed that they sometimes became trapped within a blood vessel. Some cells exited the imaging field following a period of obstruction while others remained in cerebral vessels for extended durations, in some instances for nearly 2.5 h of imaging. The team also found that one week after injection, the MPL-cells had still not cleared, although the density of blockages was much reduced.

“[While] most MPL-cells flow rapidly with the bloodstream, a small fraction become trapped within the blood vessels,” Huang tells Physics World. “We provide an example where an MPL-cell is trapped at a microvascular turn and, after some time, is fortunate enough to escape. Many obstructed cells are less fortunate, as the blockage may persist for several weeks. Obstructed cells can also trigger a crash-like chain reaction, resulting in several MPL-cells colliding in a single location and posing significant risks.”

The MPL-cell blockages also impeded blood flow in the mouse brain. Using laser speckle contrast imaging to monitor blood flow, the researchers saw reduced perfusion in the cerebral cortical vessels, notably at 30 min after microplastics injection and particularly affecting smaller vessels.

Laser speckle contrast images showing blood flow in the mouse brain
Reduced blood flow These laser speckle contrast images show blood flow in the mouse brain at various times after microplastics injection. The images indicate that blockages of microplastic-labelled cells inhibit perfusion in the cerebral cortical vessels. (Courtesy: Huang et al. Sci. Adv. 11 eadr8243 (2025))

Changing behaviour

Lastly, Huang and colleagues investigated whether the reduced blood supply to the brain caused by cell blockages caused behavioural changes in the mice. In an open-field experiment (used to assess rodents’ exploratory behaviour) mice injected with microplastics travelled shorter distances at lower speeds than mice in the control group.

The Y-maze test for assessing memory also showed that microplastics-treated mice travelled smaller total distances than control animals, with a significant reduction in spatial memory. Tests to evaluate motor coordination and endurance revealed that microplastics additionally inhibited motor abilities. By day 28 after injection, these behavioural impairments were restored, corresponding with the observed recovery of MPL-cell obstruction in the cerebral vasculature at 28 days.

The researchers conclude that their study demonstrates that microplastics harm the brain indirectly – via cell obstruction and disruption of blood circulation – rather than directly penetrating tissue. They emphasize, however, that this mechanism may not necessarily apply to humans, who have roughly 1200 times greater volume of circulating blood volume than mice and significantly different vascular diameters.

“In the future, we plan to collaborate with clinicians,” says Huang. “We will enhance our imaging techniques for the detection of microplastics in human blood vessels, and investigate whether ‘MPL-cell-car-crash’ happens in human. We anticipate that this research will lead to exciting new discoveries.”

Huang emphasizes how the use of fluorescent microplastic imaging technology has fundamentally transformed research in this field over the past five years. “In the future, advancements in real-time imaging of depth and the enhanced tracking ability of microplastic particles in vivo may further drive innovation in this area of study,” he says.

The post Imaging reveals how microplastics may harm the brain appeared first on Physics World.

What ‘equity’ really means for physics

Par : No Author
29 janvier 2025 à 12:09

If you have worked in a university, research institute or business during the past two decades you will be familiar with the term equality, diversity and inclusion (EDI). There is likely to be an EDI strategy that includes measures and targets to nurture a workforce that looks more like the wider population and a culture in which everyone can thrive. You may find a reasoned business case for EDI, which extends beyond the organization’s legal obligations, to reflect and understand the people that you work with.

Look more closely and it is possible that the “E” in EDI is not actually equality, but rather equity. Equity is increasingly being used as a more active commitment, not least by the Institute of Physics, which publishes Physics World.  How, though, is equity different to equality? What is causing this change of language and will it make any difference in practice?

These questions have become more pressing as discussions around equality and equity have become entwined in the culture wars.  This is a particularly live issue in the US as Donald Trump’s second term as US president has begun to withdraw funding from EDI activities.  But it has also influenced science policy in the UK.

The distinction between equality and equity is often illustrated by a cartoon published in 2016 by the UK artist Angus Maguire (above). It shows a fence and people of variable height gaining an equal view of a baseball match thanks to different numbers of crates that they stand on. This has itself, however, resulted in arguments about other factors such as the conditions necessary to watch the game in the stadium, or indeed even join in. That requires consideration about how the teams and the stadium could adapt to the needs of all potential participants, but also how these changes might affect the experience of others involved.

In terms of education, the Organization for Economic Co-operation and Development (OECD) states that equity “does not mean that all students obtain equal education outcomes, but rather that differences in students’ outcomes are unrelated to their background or to economic and social circumstances over which the students have no control”. This is an admirable goal, but there are questions about how to achieve it.

In OECD member countries, freedom of choice and competition yield social inequalities that flow through to education and careers. This means that governments are continually balancing the benefits of inspiring and rewarding individuals alongside concerns about group injustice.

In 2024, we hosted a multidisciplinary workshop about equity in science, and especially physics. Held at the University of Birmingham, it brought together physicists at different career stages with social scientists and people who had worked on science and education in government, charities and learned societies. At the event, social scientists told us that equality is commonly conceived as a basic right to be treated equally and not discriminated against, regardless of personal characteristics. This right provides a platform for “equality of opportunity” whereby barriers are removed so talent and effort can be rewarded.

In the UK, the promotion of equality of opportunity is enshrined within the country’s Equality Act 2010 and underpins current EDI work in physics. This includes measures to promote physics to young people in deprived areas, and to women and ethnic minorities, as well as mentoring and additional academic and financial support through all stages of education and careers.  It extends to re-shaping the content and promotion of physics courses in universities so they are more appealing and responsive to a wider constituency. In many organizations, there is also training for managers to combat discrimination and bias, whether conscious or not.

Actions like these have helped to improve participation and progression across physics education and careers, but there is still significant underrepresentation and marginalization due to gender, ethnicity and social background. This is not unusual in open and competitive societies where the effects of promoting equal opportunities are often outweighed by the resources and connections of people with characteristics that are highly represented. Talent and effort are crucial in “high-performance” sectors such as academia and industry, but they are not the only factors influencing success.

Physicists at the meeting told us that they are motivated by intellectual curiosity, fascination with the natural world and love for their subject. Yet there is also, in physics, a culture of “genius” and competition, in which confidence is crucial. Facilities and working conditions, which often involve short-term contracts and international mobility, are difficult to balance alongside other life commitments. Although inequalities and exclusions are recognized, they are often ascribed to broader social factors or the inherent requirements of research. As a result, physicists tend not to accept responsibility for inequities within the discipline.

Physics has a culture of “hyper-meritocracy” where being correct counts more than respecting others

Many physicists want merit to be a reflection of talent and effort. But we identified that physics has a culture of “hyper-meritocracy” where being correct counts more than respecting others. Across the community, some believe in positive action beyond the removal of discrimination, but others can be actively hostile to any measure associated with EDI. This is a challenging environment for any young researcher and we heard distressing stories of isolation from women and colleagues who had hidden disabilities or those who were the first in their family to go to university.

The experience, positive or not, when joining a research group as a postgraduate or postdoctoral researcher is often linked with the personality of leaders. Peer groups and networks have helped many physicists through this period of their career, but it is also where the culture in a research group or department can drive some to the margins and ultimately out of the profession. In environments like this, equal opportunities have proved insufficient to advance diversity, let alone inclusion.

Culture change

Organizations that have replaced equality with equity want to signal a commitment not just to equal treatment, but also more equitable outcomes. However, those who have worked in government told us that some people become disengaged, thinking such efforts can only be achieved by reducing standards and threatening cultures they value. Given that physics needs technical proficiency and associated resources and infrastructure, it is not a discipline where equity can mean an equal distribution of positions and resources.

Physics can, though, counter the influence of wider inequalities by helping colleagues who are under-represented to gain the attributes, experiences and connections that are needed to compete successfully for doctoral studentships, research contracts and academic positions. It can also face up to its cultural problems, so colleagues who are minoritized feel less marginalized and they are ultimately recognized for their efforts and contributions.

This will require physicists giving more prominence to marginalized voices as well as critically and honestly examining their culture and tackling unacceptable behaviour. We believe we can achieve this by collaborating with our social science colleagues. That includes gathering and interpreting qualitative data, so there is shared understanding of problems, as well as designing strategies with people who are most affected, so that everyone has a stake in success.

If this happens, we can look forward to a physics community that genuinely practices equity, rather than espousing equality of opportunity.

The post What ‘equity’ really means for physics appeared first on Physics World.

Watch this amazing quantum-inspired stained-glass artwork in all its glory

29 janvier 2025 à 10:29
This video has no voice over. (Video courtesy: Space Production)

The aim of the International Year of Quantum Science & Technology (IYQ) in 2025 to help raise the public’s awareness of the importance and impact of quantum science and applications on all aspects of life.

Ukraine-born artist Oksana Kondratyeva has certainly taken that message to heart. A London-based designer and producer of architectural glass art, she has recently created an intriguing piece of stained glass inspired by the casing for a quantum computer.

In this video specially made by Kondratyeva for Physics World, you can see her artwork, which was displayed at the 2024 British Glass Biennale, and glimpse the artist in the protective gear she wears while working with the chemicals to make her piece.

To discover more on this topic, take a look at the recent Physics World article: A ‘quantum rose’ for the 21st century: Oksana Kondratyeva on her stained-glass art inspired by a quantum computer

In the feature, Kondratyeva describes how her work fuses science and art – and reveals how the collaboration with Rigetti came about. As it happens, it was an article in Physics World during another international year – devoted to glass – that inspired the project.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Watch this amazing quantum-inspired stained-glass artwork in all its glory appeared first on Physics World.

❌
❌