↩ Accueil

Vue normale

Reçu avant avant-hier

Worm slime could inspire recyclable polymer design

13 juin 2025 à 09:53

The animal world – including some of its ickiest parts – never ceases to amaze. According to researchers in Canada and Singapore, velvet worm slime contains an ingredient that could revolutionize the design of high-performance polymers, making them far more sustainable than current versions.

“We have been investigating velvet worm slime as a model system for inspiring new adhesives and recyclable plastics because of its ability to reversibly form strong fibres,” explains Matthew Harrington, the McGill University chemist who co-led the research with Ali Miserez of Nanyang Technological University (NTU). “We needed to understand the mechanism that drives this reversible fibre formation, and we discovered a hitherto unknown feature of the proteins in the slime that might provide a very important clue in this context.”

The velvet worm (phylum Onychophora) is a small, caterpillar-like creature that lives in humid forests. Although several organisms, including spiders and mussels, produce protein-based slimy material outside their bodies, the slime of the velvet worm is unique. Produced from specialized papillae on each side of the worm’s head, and squirted out in jets whenever the worm needs to capture prey or defend itself, it quickly transforms from a sticky, viscoelastic gel into stiff, glassy fibres as strong as nylon.

When dissolved in water, these stiff fibres return to their biomolecular precursors. Remarkably, new fibres can then be drawn from the solution – implyimg that the instructions for fibre self-assembly are “encoded” within the precursors themselves, Harrington says.

High-molecular-weight protein identified

Previously, the molecular mechanisms behind this reversibility were little understood. In the present study, however, the researchers used protein sequencing and the AI-guided protein structure prediction algorithm AlphaFold to identify a specific high-molecular-weight protein in the slime. Known as a leucine-rich repeat, this protein has a structure similar to that of a cell surface receptor protein called a Toll-like receptor (TLR).

In biology, Miserez explains, this type of receptor is involved in immune system response. It also plays a role in embryonic or neural development. In the worm slime, however, that’s not the case.

“We have now unveiled a very different role for TLR proteins,” says Miserez, who works in NTU’s materials science and engineering department. “They play a structural, mechanical role and can be seen as a kind of ‘glue protein’ at the molecular level that brings together many other slime proteins to form the macroscopic fibres.”

Miserez adds that the team found this same protein in different species of velvet worms that diverged from a common ancestor nearly 400 million years ago. “This means that this different biological function is very ancient from an evolutionary perspective,” he explains.

“It was very unusual to find such a protein in the context of a biological material,” Harrington adds. “By predicting the protein’s structure and its ability to bind to other slime proteins, we were able to hypothesize its important role in the reversible fibre formation behaviour of the slime.”

The team’s hypothesis is that the reversibility of fibre formation is based on receptor-ligand interactions between several slime proteins. While Harrington acknowledges that much work remains to be done to verify this, he notes that such binding is a well-described principle in many groups of organisms, including bacteria, plants and animals. It is also crucial for cell adhesion, development and innate immunity. “If we can confirm this, it could provide inspiration for making high-performance non-toxic (bio)polymeric materials that are also recyclable,” he tells Physics World.

The study, which is detailed in PNAS, was mainly based on computational modelling and protein structure prediction. The next step, say the McGill researchers, is to purify or recombinantly express the proteins of interest and test their interactions in vitro.

The post Worm slime could inspire recyclable polymer design appeared first on Physics World.

Quantum physics guides proton motion in biological systems

9 juin 2025 à 13:00

If you dig deep enough, you’ll find that most biochemical and physiological processes rely on shuttling hydrogen atoms – protons – around living systems. Until recently, this proton transfer process was thought to occur when protons jump from water molecule to water molecule and between chains of amino acids. In 2023, however, researchers suggested that protons might, in fact, transfer at the same time as electrons. Scientists in Israel have now confirmed this is indeed the case, while also showing that proton movement is linked to the electrons’ spin, or magnetic moment. Since the properties of electron spin are defined by quantum mechanics, the new findings imply that essential life processes are intrinsically quantum in nature.

The scientists obtained this result by placing crystals of lysozyme – an enzyme commonly found in living organisms – on a magnetic substrate. Depending on the direction of the substrate’s magnetization, the spin of the electrons ejected from this substrate may be up or down. Once the electrons are ejected from the substrate, they enter the lysozymes. There, they become coupled to phonons, or vibrations of the crystal lattice.

Crucially, this coupling is not random. Instead, the chirality, or “handedness”, of the phonons determines which electron spin they will couple with – a  property known as chiral induced spin selectivity.

Excited chiral phonons mediate electron coupling spin

When the scientists turned their attention to proton transfer through the lysozymes, they discovered that the protons moved much more slowly with one magnetization direction than they did with the opposite. This connection between proton transfer and spin-selective electron transfer did not surprise Yossi Paltiel, who co-led the study with his Hebrew University of Jerusalem (HUJI) colleagues Naama Goren, Nir Keren and Oded Livnah in collaboration with Nurit Ashkenazy of Ben Gurion University and Ron Naaman of the Weizmann Institute.

“Proton transfer in living organisms occurs in a chiral environment and is an essential process,” Paltiel says. “Since protons also have spin, it was logical for us to try to relate proton transfer to electron spin in this work.”

The finding could shed light on proton hopping in biological environments, Paltiel tells Physics World. “It may ultimately help us understand how information and energy are transferred inside living cells, and perhaps even allow us to control this transfer in the future.

“The results also emphasize the role of chirality in biological processes,” he adds, “and show how quantum physics and biochemistry are fundamentally related.”

The HUJI team now plans to study how the coupling between the proton transfer process and the transfer of spin polarized electrons depends on specific biological environments. “We also want to find out to what extent the coupling affects the activity of cells,” Paltiel says.

Their present study is detailed in PNAS.

The post Quantum physics guides proton motion in biological systems appeared first on Physics World.

Speedy worms behave like active polymers in disordered mazes

24 avril 2025 à 10:00

Worms move faster in an environment riddled with randomly-placed obstacles than they do in an empty space. This surprising observation by physicists at the University of Amsterdam in the Netherlands can be explained by modelling the worms as polymer-like “active matter”, and it could come in handy for developers of robots for soil aeriation, fertility treatments and other biomedical applications.

When humans move, the presence of obstacles – disordered or otherwise – has a straightforward effect: it slows us down, as anyone who has ever driven through “traffic calming” measures like speed bumps and chicanes can attest. Worms, however, are different, says Antoine Deblais, who co-led the new study with Rosa Sinaasappel and theorist colleagues in Sara Jabbari Farouji’s group. “The arrangement of obstacles fundamentally changes how worms move,” he explains. “In disordered environments, they spread faster as crowding increases, while in ordered environments, more obstacles slow them down.”

A maze of cylindrical pillars

The team obtained this result by placing single living worms at the bottom of a water chamber containing a 50 x 50 cm array of cylindrical pillars, each with a radius of 2.5 mm. By tracking the worms’ movement and shape changes with a camera for two hours, the scientists could see how the animals behaved when faced with two distinct pillar arrangements: a periodic (square lattice) structure; and a disordered array. The minimum distance between any two pillars was set to the characteristic width of a worm (around 0.5 mm) to ensure they could always pass through.

“By varying the number and arrangement of the pillars (up to 10 000 placed by hand!), we tested how different environments affect the worm’s movement,” Sinaasappel explains. “We also reduced or increased the worm’s activity by lowering or raising the temperature of the chamber.”

These experiments showed that when the chamber contained a “maze” of obstacles placed at random, the worms moved faster, not slower. The same thing happened when the researchers increased the number of obstacles. More surprisingly still, the worms got through the maze faster when the temperature was lower, even though the cold reduced their activity.

Active polymer-like filaments

To explain these counterintuitive results, the team developed a statistical model that treats the worms as active polymer-like filaments and accounts for both the worms’ flexibility and the fact that they are self-driven. This analysis revealed that in a space containing disordered pillar arrays, the long-time diffusion coefficient of active polymers with a worm-like degree of flexibility increases significantly as the fraction of the surface occupied by pillars goes up. In regular, square-lattice arrangements, the opposite happens.

The team say that this increased diffusivity comes about because randomly-positioned pillars create narrow tube-like structures between them. These curvilinear gaps guide the worms and allow them to move as if they were straight rods for longer before they reorient. In contrast, ordered pillar arrangements create larger open spaces, or pores, in which worms can coil up. This temporarily traps them and they slow down.

Similarly, the team found that reducing the worm’s activity by lowering ambient temperatures increases a parameter known as its persistence length. This is essentially a measure of how straight the worm is, and straighter worms pass between the pillars more easily.

“Self-tuning plays a key role”

Identifying the right active polymer model was no easy task, says Jabbari Farouji. One challenge was to incorporate the way worms adjust their flexibility depending on their surroundings. “This self-tuning plays a key role in their surprising motion,” says Jabbari Farouji, who credits this insight to team member Twan Hooijschuur.

Understanding how active, flexible objects move through crowded environments is crucial in physics, biology and biophysics, but the role of environmental geometry in shaping this movement was previously unclear, Jabbari Farouji says. The team’s discovery that movement in active, flexible systems can be controlled simply by adjusting the environment has important implications, adds Deblais.

“Such a capability could be used to sort worms by activity and therefore optimize soil aeration by earthworms or even influence bacterial transport in the body,” he says. “The insights gleaned from this study could also help in fertility treatments – for instance, by sorting sperm cells based on how fast or slow they move.”

Looking ahead, the researchers say they are now expanding their work to study the effects of different obstacle shapes (not just simple pillars), more complex arrangements and even movable obstacles. “Such experiments would better mimic real-world environments,” Deblais says.

The present work is detailed in Physical Review Letters.

The post Speedy worms behave like active polymers in disordered mazes appeared first on Physics World.

❌