↩ Accueil

Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierFlux principal

The secret to academic success? Publish a top paper as a postdoc, study finds

Par : No Author
28 janvier 2025 à 11:53

If you’re a postdoc who wants to nail down that permanent faculty position, it’s wise to publish a highly cited paper after your PhD. That’s the conclusion of a study by an international team of researchers, which finds that publication rates and performance during the postdoc period is key to academic retention and early-career success. Their analysis also reveals that more than four in 10 postdocs drop out of academia.

A postdoc is usually a temporary appointment that is seen as preparation for an academic career. Many researchers, however, end up doing several postdocs in a row as they hunt for a permanent faculty job. “There are many more postdocs than there are faculty positions, so it is a kind of systemic bottleneck,” says Petter Holme, a computer scientist at Aalto University in Finland, who led the study.

Previous research into academic career success has tended to overlook the role of a postdoc, focusing instead on, say, the impact of where researchers did their PhD. To eke out the effect of a postdoc, Holme and colleagues combined information of academics’ career stages from LinkedIn with their publication history obtained from Microsoft Academic Graph. The resulting global dataset covered 45, 572 careers spanning 25 years across all academic disciplines.

Overall, they found, 41% of postdocs left academia. But researchers who publish a highly cited paper as a postdoc are much more likely to pursue a faculty career – whether they published a highly cited paper during their PhD degree, or not. Publication rate is also vital, with researchers who publish less as postdocs compared to their PhD days being more likely to drop out of academia. Conversely, as productivity increased, so did the likelihood of a postdoc gaining a faculty position.

Expanding horizons

Holme says their results suggest that a researcher only has a few years “to get on the positive feedback loop, where one success leads to another”. In fact, the team found that a “moderate” change in research topic when moving from PhD to postdoc could improve future success. “It is a good thing to change your research focus, but not too much,” says Holme because it widens perspective without having to learn an entire new research topic from scratch.

Likewise, shifting perspective by moving abroad can also benefit postdocs. The analysis shows that a researcher moving abroad for a postdoc boosts their citations, but a move to a different institution in the same country has a negligible impact.

The post The secret to academic success? Publish a top paper as a postdoc, study finds appeared first on Physics World.

Explore the quantum frontier: all about the International Year of Quantum Science and Technology 2025

24 janvier 2025 à 12:13

In June 1925 a relatively unknown physics postdoc by the name of Werner Heisenberg developed the basic mathematical framework that would be the basis for the first quantum revolution. Heisenberg, who would later win the Nobel Prize for Physics, famously came up with quantum mechanics on a two-week vacation on the tiny island of Helgoland off the coast of Germany, where he had gone to cure a bad bout of hay fever.

Now, a century later, we are on the cusp of a second quantum revolution, with quantum science and technologies growing rapidly across the globe. According to the State of Quantum 2024 report, a total of 33 countries around the world currently have government initiatives in quantum technology, of which more than 20 have national strategies with large-scale funding. The report estimates that up to $50bn in public cash has already been committed.

It’s a fitting tribute, then, that the United Nations (UN) has chosen 2025 to be the International Year of Quantum Science and Technology (IYQ). They hope that the year will raise global awareness of the impact that quantum physics and its applications have already had on our world. The UN also aims to highlight to the global public the myriad potential future applications of quantum technologies and how they could help tackle universal issues – from climate and clean energy to health and infrastructure – while also addressing the UN’s sustainable development goals.

The Institute of Physics (IOP), which publishes Physics World, is one of the IYQ’s six “founding partners” alongside the German (DPG) and American physical societies (APS), SPIE, Optica and the Chinese Optical Society. “The UNESCO International Year of Quantum is a wonderful opportunity to spread the word about quantum research and technology and the transformational opportunities it is opening up” says Tom Grinyer, chief executive of the IOP. “The Institute of Physics is co-ordinating the UK and Irish elements of the year, which mark the 100th anniversary of the first formulation of quantum mechanics, and we are keen to celebrate the milestone, making sure that as many people as possible get the opportunity to find out more about this fascinating area of science and technology,” he adds.

“IYQ provides the opportunity for societies and organizations around the world to come together in marking both the 100-year history of the field, as well as the longer-term real-world impact that quantum science is certain to have for decades to come,” says Tim Smith, head of portfolio development at IOP Publishing. “Quantum science and technology represents one of the most exciting and rapidly developing areas of science today, encompassing the global physical-sciences community in a way that connects scientific wonder with fundamental research, technological innovation, industry, and funding programmes worldwide.”

Taking shape

The official opening ceremony for IYQ takes place on 4–5 February at the UNESCO headquarters in Paris, France, although several countries, including Germany and India, held their own launches in advance of the main event. Working together, the IOP and IOP Publishing have developed a wide array of quantum resources, talks, conferences, festivals and public-themed events planned as a part of the UK’s celebrations for IYQ. 

In late February, meanwhile, the Royal Society – the world’s oldest continuously active learned society – will host a two-day quantum conference. Dubbed “Quantum Information”, it will bring together scientists, industry leaders and public-sector stakeholders to discuss the current challenges involved in quantum computing, networks and sensing systems.

In Scotland, the annual Edinburgh Science Festival , which takes place in April, will likely include a special “quantum explorers” exhibit and workshop by the UK’s newly launched National Quantum Computing Centre. Elsewhere, the Quantum Software Lab at the School of Informatics at the University of Edinburgh is hosting a month-long “Quantum Fringe 2025” event across Scotland. It will include a quantum machine-learning school on the Isle of Skye and well as the annual UK Quantum Hackathon, which brings together teams of aspiring coders with industry mentors to tackle practical challenges and develop solutions using quantum computing.

In June, the Institution of Engineering and Technology is hosting a Quantum Engineering and Technologies conference, as part of its newly launched Quantum technologies and 6G and Future Networks events. The event’s themes include everything from information processing and memories to photon sources and cryptography.

The IOP will use the focus this year gives us to continue to make the case for the investment in research and development, and support for physics skills, which will be crucial if we are to fully unlock the economic and social potential of the quantum sector

Further IYQ-themed events will take place at  QuAMP, the IOP’s biennial international conference on quantum, atomic and molecular physics in September. Activities culminate in a three-part celebration in November, with a quantum community event led by the IOP’s History of Physics and quantum Business and Innovation Growth (qBIG) special interest groups, a schools event at the Royal Institution, and a public celebration with a keynote speech from University of Surrey quantum physicist and broadcaster Jim Al-Khalili. “The UK and Ireland already have a globally important position in many areas of quantum research, with the UK, for instance, having established one of the world’s first National Quantum Technology Programmes,” explains Grinyer. “We will also be using the focus this year gives us to continue to make the case for the investment in research and development, and support for physics skills, which will be crucial if we are to fully unlock the economic and social potential of what is both a fascinating area of research, and a fast growing physics-powered business sector,” he adds.

Quantum careers

With the booming quantum marketplace, it’s no surprise that employers are on the hunt for many skilled physicists to join the workforce. And indeed, there is a significant scarcity of skilled quantum professionals for the many roles across industry and academia. Also, with quantum research advancing everything from software and machine learning to materials science and drug discovery, your skills will be transferable across the board.

If you plan to join the quantum workforce, then choosing the right PhD programme, having the right skills for a specific role and managing risk and reward in the emerging quantum industry are all crucial. There are a number of careers events on the IYQ calendar, to learn more about the many career prospects for physicists in the sector. In April, for example, the University of Bristol’s Quantum Engineering Centre for Doctoral Training is hosting a Careers in Quantum event, while the Economist magazine is hosting its annual Commercialising Quantum conference in May.

There will also be a special quantum careers panel discussion, including top speakers from the UK and the US, as part of our newly launched Physics World Live panel discussions in April. This year’s Physics World Careers 2025 guide has a special quantum focus, and there’ll also be a bumper, quantum-themed issue of the Physics World Briefing in June. The Physics World quantum channel will be regularly updated throughout the year so you don’t miss a thing.

Read all about it

IOP Publishing’s journals will include specially curated content – from a series of Perspectives articles – personal viewpoints from leading quantum scientists – in Quantum Science and Technology. The journal will also be publishing roadmaps in quantum computing, sensing and communication, as well as focus issues on topics such as quantum machine learning and technologies for quantum gravity and thermodynamics in quantum coherent platforms.

“Going right to the core of IOP Publishing’s own historic coverage we’re excited to be celebrating the IYQ through a year-long programme of articles in Physics World and across our journals, that will hopefully show a wide audience just why everyone should care about quantum science and the people behind it,” says Smith.

Of course, we at Physics World have a Schrödinger’s box full of fascinating quantum articles for the coming year – from historical features to the latest cutting-edge developments in quantum tech. So keep your eyes peeled.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Explore the quantum frontier: all about the International Year of Quantum Science and Technology 2025 appeared first on Physics World.

Ask me anything: Nadya Mason ‘I find myself looking at everything as systems of equations’

20 décembre 2024 à 12:19

What skills do you use every day in your job?

Right now, I spend 95% of my time being a dean, and in that job the skill I use every day is problem-solving. That’s one of the first things we learn as physicists: it’s not enough just to know the technical background, you have to be able to apply it. I find myself looking at everything as systems of equations – this person wants this, this thing needs to go there, we need money to do that thing – and thinking about how to put them together. We do a really good job in physics of teaching people how to think, so they can take a broad look at things and make them work.

What do you like best and least about your job?

The thing I like best is the opportunity to have a wide impact, not just on the faculty who are doing amazing research, but also on students – our next generation of scientific leaders – and people in the wider community. We do a lot of public service outreach at UChicago PME. Outreach has had a big impact on me so it’s incredibly satisfying that, as dean, I can provide those opportunities at various levels for others.

The thing I like least is that because we have so much to do, figuring out who can do what, and how – within what are always limited resources – often feels like trying to solve a giant jigsaw puzzle. Half the time, it feels like the puzzle board is bigger than the number of pieces, so I’m figuring out how to make things work in ways that sometimes stretch people thin, which can be very frustrating for everybody. We all want to do the best job we can, but we need to understand that we sometimes have limits.

What do you know today that you wish you’d known at the start of your career?

I feel a little guilty saying this because I’m going to label myself as a true “in the lab” scientist, but I wish I’d known how much relationships matter. Early on, when I was a junior faculty member, I was focused on research; focused on training my students; focused on just getting the work done. But it didn’t take long for me to realize that of course, students aren’t just workers. They are twenty-somethings with lives and aspirations and goals.

Thankfully, I figured that out pretty quickly, but at every step along the way, as I try to focus on the problem to solve, I have to remind myself that people aren’t problems. People are people, and you have to work with them to solve problems in ways that work for everybody. I sometimes wish there was more personnel training for faculty, rather than a narrow focus on papers and products, because it really is about people at the end of the day.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Ask me anything: Nadya Mason ‘I find myself looking at everything as systems of equations’ appeared first on Physics World.

Ask me anything: Dave Smith – ‘I don’t spend time on regrets’

6 décembre 2024 à 12:00

What skills do you use every day in your job?

Being sociable, switching topics in an instant and making judgements.

Being sociable may sound trivial, but collaboration has been vital in all the roles I have had, especially now that I work in such a large and complex organization. No single person has the answer to the challenges we face (although occasionally you meet people who think they do). By working together, humans accomplish amazing things.

A key feature of seniority – managerial seniority anyway – is juggling multiple topics each day; from the bogs and bike sheds; to finance; to investment decisions; to technical review; to people – it has few limits. With the fast pace of our work, especially with a new government coming in, we need to quickly adapt and reprioritize. I have several teams reporting to me at any one time, so it’s important to allocate time and focus effectively – this is a core skill I’m constantly working on.

What do you like best and least about your job?

Even though I am officially part of the Department for Science, Innovation and Technology (DSIT), as the national technology adviser, I love that my work spans all government departments. We have a fantastic network of departmental chief scientific advisers (CSAs), led by Dame Angela McLean, the government’s chief scientific adviser. This network lets me see the amazing work my colleagues are doing. Anyone who has worked in government knows how tricky it can sometimes be to work through the barriers between departments. But the CSA network is open, allowing us to have honest and productive conversations, which is crucial for effective collaboration.

I’m also incredibly lucky to have a wonderful, efficient and supportive private office. They help me connect with the right people across government to push our key projects forward.

What do you know today, that you wish you knew when you were starting out in your career?

I don’t spend time on regrets, but I do try to learn. Learning is part of the journey and the joy, so I am not sure that I would give my younger self any advice. There have been big highs and deep lows but it has turned out ok so far. I have had three career plans in my life; they made me feel secure, but  I didn’t complete any of them because something more interesting cropped up. Since then, I have stopped having plans.

I would say two things to others, however. The first is advice that was given to me, which is to do the right things to make yourself useful in the first half of your career, then the second half will look after itself – don’t chase glory, just get good. The second is that whilst some might dismiss diversity as a buzzword, I see it as crucial to success, so value a wide range of views and skills when forming teams.

The post Ask me anything: Dave Smith – ‘I don’t spend time on regrets’ appeared first on Physics World.

From the blackboard to the boardroom: why university is a great place to become an entrepreneur

Par : No Author
29 novembre 2024 à 12:00

What does an idea need to change the world? Physics drives scientific advancements in healthcare, green energy, sustainable materials and many other applications. However, to bridge the gap between research and real-world applications, physicists need to be equipped with entrepreneurship skills.

Many students dream of using their knowledge and passion for physics to change the world, but when it comes to developing your own product, it can be hard to know where to start. That’s where my job comes in – I have been teaching scientists and engineers entrepreneurship for more than 20 years.

Several of the world’s most successful companies, including Sony, Texas Instruments, Intel and Tesla Motors, were founded by physicists, and there are many contemporary examples too. For example, Unitary, an AI company that identifies misinformation and deepfakes, was founded by Sasha Haco, who has a PhD in theoretical physics. In materials science, Aruna Zhuma is the co-founder of Global Graphene Group, which manufactures single layers of graphene oxide for use in electronics. Zhuma has nearly 500 patents, the second largest number of any inventor in the field.

In the last decade quantum technology, which encompasses computing, sensing and communications, has spawned hundreds of start-ups, often spun out from university research. This includes cybersecurity firm ID Quantique, super sensitive detectors from Single Quantum, and quantum computing from D-Wave. Overall, about 8–9% of students in the UK start businesses straight after they graduate, with just over half (58%) of these graduate entrepreneurs founding firms in their subject area.

However, even if you aren’t planning to set up your own business, entrepreneurship skills will be important no matter what you do with your degree. If you work in industry you will need to spot trends, understand customers’ needs and contribute to products and services. In universities, promotion often requires candidates to demonstrate “knowledge transfer”, which means working with partners outside academia.

Taking your ideas to the next level

The first step of kick-starting your entrepreneurship journey is to evaluate your existing experience and goals. Do you already have an idea that you want to take forward, or just want to develop skills that will broaden your career options?

If you’re exploring the possibilities of entrepreneurship you should look for curricular modules at your university. These are normally tailored to those with no previous experience and cover topics such as opportunity spotting, market research, basic finance, team building and intellectual property. In addition, in the UK at least, many postgraduate centres for doctoral training (CDTs) now offer modules in business and entrepreneurship as part of their training programmes. These courses sometimes give students the opportunity to take part in live company projects, which are a great way to gain skills.

You should also look out for extracurricular opportunities, from speaker events and workshops to more intensive bootcamps, competitions and start-up weekends. There is no mark or grade for these events, so they allow students to take risks and experiment.

Like any kind of research, commercializing physics requires resources such as equipment and laboratory space. For early-stage founders, access to business incubators – organizations that provide shared facilities – is invaluable. You would use an incubator at a relatively early stage to finalize your product, and they can be found in many universities.

Accelerator programmes, which aim to fast-track your idea once you have a product ready and usually run for a defined length of time, can also be beneficial. For example, the University of Southampton has the Future Worlds Programme based in the physical sciences faculty. Outside academia, the European Space Agency has incubators for space technology ideas at locations throughout Europe, and the Institute of Physics also has workspace and an accelerator programme for recently graduated physicists and especially welcomes quantum technology businesses. The Science and Technology Facilities Council (STFC) CERN Business Incubation Centre focuses on high-energy physics ideas and grants access to equipment that would be otherwise unaffordable for a new start-up.

More accelerator programmes supporting physics ideas include Duality, which is a Chicago-based 12-month accelerator programme for quantum ideas; Quantum Delta NL, based in the Netherlands, which provides programmes and shared facilities for quantum research; and Techstars Industries of the Future, which has locations worldwide.

Securing your future

It’s the multimillion-pound deals that make headlines but to get to that stage you will need to gain investors’ confidence, securing smaller funds to take your idea forward step-by-step. This could be used to protect your intellectual property with a patent, make a prototype or road test your technology.

Since early-stage businesses are high risk, this money is likely to come from grants and awards, with commercial investors such as venture capital or banks holding back until they see the idea can succeed. Funding can come from government agencies like the STFC in the UK, or US government scheme America’s Seed Fund. These grants are for encouraging innovation, applied research and for finding disruptive new technology, and no return is expected. Early-stage commercial funding might come from organizations such as Seedcamp, and some accelerator programmes offer funding, or at least organize a “demo day” on completion where you can showcase your venture to potential investors.

Group of students sat at a round table with large sheets of paper and Post-it notes
Science meets business Researchers at the University of Manchester participating in an entrepreneurship training event. (Courtesy: Robert Phillips)

While you’re a student, you can take advantage of the venture competitions that run at many universities, where students pitch an idea to a panel of judges. The prizes can be significant, ranging from £10k to £100k, and often come with extra support such as lab space, mentoring and help filing patents. Some of these programmes are physics-specific, for example the Eli and Britt Harari Enterprise Award at the University of Manchester, which is sponsored by physics graduate Eli Harari (founder of SanDisc) awards funding for graphene-related ideas.

Finally, remember that physics innovations don’t always happen in the lab. Theoretical physicist Stephen Wolfram founded Wolfram Research in 1988, which makes computational technology including the answer engine Wolfram Alpha.

Making the grade

There are many examples of students and recent graduates making a success from entrepreneurship. Wai Lau is a Manchester physics graduate who also has a master’s of enterprise degree. He started a business focused on digital energy management, identifying energy waste, while learning about entrepreneurship. His business Cloud Enterprise has now branched out to a wider range of digital products and services.

Computational physics graduate Gregory Mead at Imperial College London started Musicmetric, which uses complex data analytics to keep track of and rank music artists and is used by music labels and artists. He was able to get funding from Imperial Innovations after making a prototype and Musicmetric was eventually bought by Apple.

AssestCool Thermal Metaphotonics technology cools overhead power lines reducing power losses using novel coatings. It entered the Venture Further competition at the University of Manchester and has now had a £2.25m investment from Gritstone Capital.

Entrepreneurship skills are being increasingly recognized as necessary for physics graduates. In the UK, the IOP Degree Accreditation Framework, the standard for physics degrees, expects students to have “business awareness, intellectual property, digital media and entrepreneurship skills”.

Thinking about taking the leap into business can be daunting, but university is the ideal time to think about entrepreneurship. You have nothing to lose and plenty of support available.

The post From the blackboard to the boardroom: why university is a great place to become an entrepreneur appeared first on Physics World.

Physicists in cancer radiotherapy

Par : No Author
15 novembre 2024 à 11:57

The programme focuses on the cancer radiation therapy patient pathway, with the aim of equipping students with the skills to progress onto careers in clinical, academic research or commercial medical physics opportunities.

Alan McWilliam, programme director of the new course, is also a reader in translational radiotherapy physics. He explains: “Radiotherapy is a mainstay of cancer treatment, used in around 50% of all treatments, and can be used together with surgery or systemic treatments like chemotherapy or immunotherapy. With a heritage dating back over 100 years, radiotherapy is now highly technical, allowing the radiation to be delivered with pin-point accuracy and is increasingly interdisciplinary to ensure a high-quality, curative delivery of radiation to every patient.”

“This new course builds on the research expertise at Manchester and benefits from being part of one of the largest university cancer departments in Europe, covering all aspects of cancer research. We believe this master’s reflects the modern field of medical physics, spanning the multidisciplinary nature of the field.”

Cancer pioneers

Manchester has a long history of developing solutions to drive improvements in healthcare, patients’ lives and the wellbeing of individuals. This new course draws on scientific research and innovation to equip those interested in a career in medical physics or cancer research with specialist skills that draw on a breadth of knowledge.  Indeed, the course units bring together expertise from academics that have pioneered, amongst other work, the use of image-guided radiotherapy, big data analysis using real-world radiotherapy data, novel MR imaging for tracking oxygenation of tumours during radiotherapy, and proton research beam lines. Students will benefit directly from this network of research groups by being able to join research seminars throughout the course.

Working with clinical scientists

The master’s course is taught together with clinical physicists from The Christie NHS Foundation Trust, one of the largest single-site cancer hospitals in Europe and the only UK cancer hospital connected directly to a research institute. The radiotherapy department currently has 16 linear accelerators across four sites, an MR-guided radiotherapy service and one of the two NHS high-energy proton beam services. The Christie is currently one of only two cancer centres in the world with access to both proton beam and an MR-guided linear accelerator. For students, this partnership provides the opportunity to work with people at the forefront of cancer treatment developments.

To reflect the current state of radiotherapy, the University of Manchester has worked with The Christie to ensure students gain the skills necessary for a successful, modern, medical physics career. Units have a strong clinical focus, with access to technology that allows students to experience and learn from clinical workflows.

Students will learn the fundamentals of how radiotherapy works, from interactions of X-rays and matter, through X-ray beam generation control and measurement, and to how treatments are planned. Complementary to X-ray therapy, students will learn about the concepts of proton beam therapy, how the delivery of protons is different from X-rays, and the potential clinical benefits and unique difficulties of protons due to greater uncertainties from how protons interact with matter.

Delivering radiation with pin-point accuracy

The course will provide an in-depth understanding of how imaging can be used throughout the patient pathway to aid treatment decisions and guide the delivery of radiation.

The utility of CT, MRI and PET scanners across clinical pathways is explored, and the area of radiation delivery is complemented by material on radiobiology – how cells and tissues respond to radiation.

The difference between the response of tumours and normal tissue to radiation is called the therapeutic ratio. The radiobiology teaching will focus on how to maximize this ratio, essentially how to improve cure whilst minimising the risk of side-effects due to irradiation of nearby normal tissues. Students will also explore how this ratio could be enhanced or modified to improve the efficacy of all forms of radiotherapy.

Research and technology

A core strength of the research groups in Manchester is the use of routinely collected data in the evaluation of improvements in treatment delivery or the clinical translation of research findings. Many such improvements do not qualify for a full randomized clinical trial. However, there are many pragmatic methods to evaluate clinical benefit. Through studying clinical workflows and translation, these concepts will be explored along with investigating how to maximise results from all available data.

Modern medical physicists need an appreciation of artificial intelligence (AI). AI is emerging as an automation tool throughout the radiation therapy workflow; for example, segmentation of tissues, radiotherapy planning and quality assurance. This course delves into the fundamentals of AI and machine learning, giving students the opportunity to implement their own solution for image classification or image segmentation. For those with leadership aspirations, guest lecturers from various academic, clinical or commercial backgrounds will detail career routes and how to develop knowledge in this area.

Pioneering new learning and assessments

Programme director Alan McWilliam talks us through the design of the course and how students are evaluated:

“An aspect of the teaching we are particularly proud of is the design of the assessments throughout the units. Gone are written exams, with assessments allowing students to apply their new knowledge to real medical physics problems. Students will perform dosimetric calculations and Monte Carlo simulations of proton depositions, as well as build an image registration pipeline and pitch for funding in a dragon’s den (or shark tank) scenario. This form of assessment will allow students to demonstrate skills directly useful for future career pathways.”

“The final part of the course is the research project, to take place after the taught elements are complete. Students will choose from projects which will embed them with one of the academic or clinical groups. Examples for the current cohort include training an AI segmentation model for muscle in CT images and associating this with treatment outcomes; simulating prompt gamma rays from proton deliveries for dose verification; and assisting with commissioning MR-guided workflows for ultra-central lung treatments.”

Develop your specialist skills

The Medical Physics in Cancer Radiation Therapy MSc is a one-year full-time (two-year part-time) programme at the University of Manchester.

Applications are now open for the next academic year, and it is recommended to apply early, as applications may close if the course is full.

Find out more and apply: https://uom.link/medphyscancer 

The post Physicists in cancer radiotherapy appeared first on Physics World.

❌
❌