Earth observation is no longer just about capturing images from orbit — it is about delivering insights that shape how societies respond to global challenges. CSO Co., Ltd., a subsidiary […]
When the global space community looks ahead to September, all eyes turn to Paris. From September 15–19, 2025, the French capital will become the decision-making hub of the space domain, […]
This episode features a wide-ranging interview with the astrochemist Ewine van Dishoeck, who is professor emeritus of molecular astrophysics at Leiden Observatory in the Netherlands. In 2018 she was awarded The Kavli Prize in Astrophysics and in this podcast she talks about her passion for astrochemistry and how her research combines astronomy, astrophysics, theoretical chemistry and laboratory experiments.
Van Dishoeck talks about some of the key unanswered questions in astrochemistry, including how complex molecules form on the tiny specks of dust in interstellar space. We chat about the recent growth in our understanding of exoplanets and protoplanetary discs and the prospect of observing signs of life on distant planets or moons.
The Atacama Large Millimetre Array radio telescope and the James Webb Space Telescope are two of the major facilities that Van Dishoeck has been involved with. She talks about the challenges of getting the astronomy community to agree on the parameters of a new observatory and explains the how collaborative nature of these projects ensures that instruments meet the needs of multiple research communities.
Van Dishoeck looks to the future of astrochemistry and what new observatories could bring to the field. The interview ends with a call for the next generation of scientists to pursue careers in astrochemistry.
This podcast is sponsored by The Kavli Prize.
The Kavli Prize honours scientists for basic research breakthroughs in astrophysics, nanoscience and neuroscience – transforming our understanding of the big, the small and the complex. One million dollars is awarded in each of the three fields. The Kavli Prize is a partnership among The Norwegian Academy of Science and Letters, the Norwegian Ministry of Education and Research, and The Kavli Foundation (USA).
The vision for The Kavli Prize comes from Fred Kavli, a Norwegian-American entrepreneur and philanthropist who turned his lifelong fascination with science into a lasting legacy for recognizing scientific breakthroughs and for supporting basic research.
The Kavli Prize follows a two-year cycle, with an open call for nominations between 1 July and 1 October in odd-numbered years, and an announcement and award ceremony during even-numbered years. The next Kavli Prize will be announced in June 2026. Visit kavliprize.org for more information.
Collaborative insights: The UK Quantum Hackathon, organized by the NQCC for the fourth consecutive year and a cornerstone of the Quantum Fringe festival, allowed industry experts to work alongside early-career researchers to explore practical use cases for quantum computing. (Courtesy: NQCC)
The International Year of Quantum Science and Technology (IYQ) has already triggered an explosion of activities around the world to mark 100 years since the emergence of quantum mechanics. In the UK, the UNESCO-backed celebrations have provided the perfect impetus for the University of Edinburgh’s Quantum Software Lab (QSL) to work with the National Quantum Computing Centre (NQCC) to organize and host a festival of events that have enabled diverse communities to explore the transformative power of quantum computing.
Known collectively as the Quantum Fringe, in a clear nod to Edinburgh’s famous cultural festival, some 16 separate events have been held across Scotland throughout June and July. Designed to make quantum technologies more accessible and more relevant to the outside world, the programme combined education and outreach with scientific meetings and knowledge exchange.
The Quantum Fringe programme evolved from several regular fixtures in the quantum calendar. One of these cornerstones was the NQCC’s flagship event, the UK Quantum Hackathon, which is now in its fourth consecutive year. In common with previous editions, the 2025 event challenged teams of hackers to devise quantum solutions to real-world use cases set by mentors from different industry sectors. The teams were supported throughout the three-day event by the industry mentors, as well as by technical experts from providers of various quantum resources.
Time constrained: the teams of hackers were given two days to formulate their solution and test it on simulators, annealers and physical processors. (Courtesy: NQCC)
This year, perhaps buoyed by the success of previous editions, there was a significant uptick in the number of use cases submitted by end-user organizations. “We had twice as many applications as we could accommodate, and over half of the use cases we selected came from newcomers to the event,” said Abby Casey, Quantum Readiness Delivery Lead at the NQCC. “That level of interest suggests that there is a real appetite among the end-user community for understanding how quantum computing could be used in their organizations.”
Reflecting the broader agenda of the IYQ, this year the NQCC particularly encouraged use cases that offered some form of societal benefit, and many of the 15 that were selected aimed to align with the UN’s Sustainable Development Goals. One team investigated the accuracy of quantum-powered neural networks for predicting the progression of a tumour, while another sought to optimize the performance of graphene-based catalysts for fuel cells. Moonbility, a start-up firm developing digital twins to optimize the usage of transport and infrastructure, challenged its team to develop a navigation system capable of mapping out routes for people with specific mobility requirements, such as step-free access or calmer environments for those with anxiety disorders.
During the event the hackers were given just two days to explore the use case, formulate a solution, and generate results using quantum simulators, annealers and physical processors. The last day provided an opportunity for the teams to share their findings with their peers and a five-strong judging panel that was chaired by Sir Peter Knight, one of the architects of the UK’s National Quantum Technologies Programme and co-chair of the IYQ’s Steering Committee a prime mover in the IYQ celebrations. “Your effort, energy and passion have been quite extraordinary,” commented Sir Peter at the end of the event. “It’s truly impressive to see what you have achieved in just two days.”
From the presentations it was clear that some of the teams had adapted their solution to reflect the physical constraints of the hardware platform they had been allocated. Those explorations were facilitated by the increased participation of mentors from hardware developers, including QuEra and Pasqal for cold-atom architectures, and Rigetti and IBM for gate-based superconducting processors. “Cold atoms offer greater connectivity than superconducting platforms, which may make them more suited to solving particular types of problems,” said Gerard Milburn of the University of Sussex, who has recently become a Quantum Fellow at the NQCC.
Results day: The final day of the hackathon allowed the teams to share their results with the other participants and a five-strong judging panel. (Courtesy: NQCC)
The winning team, which had been challenged by Aioi R&D Lab to develop a quantum-powered solution for scheduling road maintenance, won particular praise for framing the problem in a way that recognized the needs of all road users, not just motorists. “It was really interesting that they thought about the societal value right at the start, and then used those ethical considerations to inform the way they approached the problem,” said Knight.
The wider impact of the hackathon is clear to see, with the event providing a short, intense and collaborative learning experience for early-career researchers, technology providers, and both small start-up companies and large multinationals. This year, however, the hackathon also provided the finale to the Quantum Fringe, which was the brainchild of Elham Kashefi and her team at the QSL. Taking inspiration from the better-known Edinburgh Fringe, the idea was to create a diverse programme of events to engage and inspire different audiences with the latest ideas in quantum computing.
“We wanted to celebrate the International Year of Quantum in a unique way,” said Mina Doosti, one of the QSL’s lead researchers. “We had lots of very different events, many of which we hadn’t foreseen at the start. It was very refreshing, and we had a lot of fun.”
One of Doosti’s favourite events was a two-day summer school designed for senior high-school students. As well as introducing the students to the concepts of quantum computing, the QSL researchers challenged them to write some code that could be run on IBM’s free-to-access quantum computer. “The organizers and lecturers from the QSL worked hard to develop material that would make sense to the students, and the attendees really grabbed the opportunity to come and learn,” Doosti explained. “From the questions they were asking and the way they tackled the games and challenges, we could see that they were interested and that they had learnt something.”
From the outset the QSL team were also keen for the Quantum Fringe to become a focal point for quantum-inspired activities that were being planned by other organizations. Starting from a baseline of four pillar events that had been organized by the NQCC and the QSL in previous years, the programme eventually swelled to 16 separate gatherings with different aims and outcomes. That included a public lecture organized by the new QCi3 Hub – a research consortium focused on interconnected quantum technologies – which attracted around 200 people who wanted to know more about the evolution of quantum science and its likely impact across technology, industry, and society. An open discussion forum hosted by Quantinuum, one of the main sponsors of the festival, also brought together academic researchers, industry experts and members of the public to identify strategies for ensuring that quantum computing benefits everyone in society, not just a privileged few.
Quantum researchers also had plenty of technical events to choose from. The regular AIMday Quantum Computing, now in its third year, enabled academics to work alongside industry experts to explore a number of business-led challenges. More focused scientific meetings allowed researchers to share their latest results in quantum cryptography and cybersecurity, algorithms and complexity, and error correction in neutral atoms. For her part, Doosti co-led the third edition of Foundations in Quantum Computing, a workshop that combines invited talks with dedicated time for focused discussion. “The speakers are briefed to cover the evolution of a particular field and to highlight open challenges, and then we use the discussion sessions to brainstorm ideas around a specific question,” she explained.
Those scientific meetings were complemented by a workshop on responsible quantum innovation, again hosted by the QCi3 Hub, and a week-long summer school on the Isle of Skye that was run by Heriot-Watt University and the London School of Mathematics. “All of our partners ran their events in the way they wanted, but we helped them with local support and some marketing and promotion,” said Ramin Jafarzadegan, the QSL’s operations manager and the chair of the Quantum Fringe festival. “Bringing all of these activities together delivered real value because visitors to Edinburgh could take part in multiple events.”
Indeed, one clear benefit of this approach was that some of the visiting scientists stayed for longer, which also enabled them to work alongside the QSL team. That has inspired a new scheme, called QSL Visiting Scholars, that aims to encourage scientists from other institutions to spend a month or so in Edinburgh to pursue collaborative projects.
As a whole, the Quantum Fringe has helped both the NQCC and the QSL in their ambitions to bring diverse stakeholders together to create new connections and to grow the ecosystem for quantum computing in the UK. “The NQCC should have patented the ‘quantum hackathon’ name,” joked Sir Peter. “Similar events are popping up everywhere these days, but the NQCC’s was among the first.”
The Butler-Volmer equation is commonly the standard model of electrochemical kinetics. Typically, the effects of applied voltage on the free energies of activation of the forward and backward reactions are analyzed and used to derive a current-voltage relationship. Traditionally, specific properties of the electrode metal were not considered in this derivation and consequently the resulting expression contained no information on the variation of exchange current density with electrode-material-specific parameters such as work function Φ. In recent papers1,2, Buckley and Leddy revisited the classical derivation of the Butler-Volmer equation to include the effect of the electrode metal. We considered in detail the complementary relationship of the chemical potential of electrons μe and the Galvani potential φ and so derived expressions for the current-voltage relationship and the exchange current density that include μe The exchange current density j0 appears as an exponential function of Δμe. Making the approximation Δμe ≈ —FΔΦ yields a linear relationship between ln j0 and Φ. This linear increase in ln j0 with Φ had long been reported3 but had not been explained. In this webinar, these recent modifications of the Butler-Volmer equation and their consequences will be discussed.
1 K S R Dadallagei, D L Parr IV, J R Coduto, A Lazicki, S DeBie, C D Haas and J Leddy, J. Electrochem. Soc, 170, 086508 (2023)
2 D N Buckley and J Leddy, J. Electrochem. Soc, 171, 116503 (2024)
3 S Trasatti, J. Electroanal. Chem., 39, 163—184 (1972)
D Noel Buckley
D Noel Buckley is professor of physics emeritus at the University of Limerick, Ireland and adjunct professor of chemical and biomolecular engineering at Case Western Reserve University. He is a fellow and past-president of ECS and has served as an editor of both the Journal of the Electrochemical Society and Electrochemical and Solid State Letters. He has over 50 years of research experience on a range of topics. His PhD research on oxygen electrochemistry at University College Cork, Ireland was followed by postdoctoral research on high-temperature corrosion at the University of Pennsylvania. From 1979 to 1996, he worked at Bell Laboratories (Murray Hill, NJ), initially on lithium batteries but principally on III-V semiconductors for electronics and photonics. His research at the University of Limerick has been on semiconductor electrochemistry, stress in electrodeposited nanofilms and electrochemical energy storage, principally vanadium flow batteries in collaboration with Bob Savinell’s group at Case. His recent interest in the theory of electron transfer kinetics arose from collaboration with Johna Leddy at the University of Iowa. He has taught courses in scientific writing since 2006 at the University of Limerick and short courses at several ECS Meetings. He is a recipient of the Heinz Gerischer Award and the ECS Electronics and Photonics Division Award. Recently, he led Poetry Evenings at ECS Meetings in Gothenburg and Montreal.
In this work, Al and W are compared as individual dopants as well as co-dopants to arrive to an optimal cathode active material design. The objective is to improve the energy density of the materials without compromising cycle life; a feat which was previously thought unattainable for Ni-rich, Co-free layered oxide materials.
The findings emphasize the importance of understanding the effect of chemical composition and synthesis conditions on the morphology of the material particles. In turn, this morphology plays a determinant role in the cycling performance of the electrode.
In addition to conventional material characterization methods (such as x-ray diffraction, scanning electron microscopy, incremental capacity analysis, etc.), measurements of the particles’ strength were also analyzed to provide better insight on how the material will perform in an expanding-contracting electrode. Mechanical resilience if often overlook when studying and designing cathode materials, however, particularly in materials that are prone to microcracking, this information provides an important piece of the puzzle to understand the degradation mechanisms of the electrode.
This led to the development of a Co-free cathode material which can provide a capacity of 260 mAh/g on the first cycle while retaining 95% capacity after 50 cycles in half cells cycled to 4.3 V. At a lower upper-cutoff voltage of 4.06 V, this material delivers 220 mAh/g with no observable capacity loss after 100 cycles.
Ines Hamam
InesHamam has obtained her PhD in materials engineering (in 2024) and her MSc in physics (in 2020) from the University of Dalhousie under the supervision of world-renowned battery expert Dr Jeff Dahn. She is now a technologist at BMW furthering the world effort of transport electrification.
The webinar will present the overall experience of a radiotherapy department that utilized RTsafe’s QA solutions in preparation for achieving ISRS certification. The session will focus on the use of RTsafe’s Prime phantom in combination with film remote dosimetry services, demonstrating how this approach enables End-to-End QA testing and supports accurate, reproducible film dosimetry audits. Attendees will gain insights into how these tools can be employed to validate the entire SRS treatment workflow, from imaging and planning to dose delivery, while aligning with the rigorous standards required for ISRS certification.
Serenella Russo
Serenella Russo is senior medical physicist and Reference MPE at the Radiation Oncology Unit, Santa Maria Annunziata Hospital, Florence. She brings expertise in external beam radiation therapy dosimetry, with a focus on small field measurements and detector characterization, as well as clinical implementation and planning of VMAT/IMRT, SRS/SBRT techniques. Russo is responsible for the Italian Association of Medical Physics (AIFM) audit service for radiotherapy megavoltage photons beams. Coordinator of (AIFM) SBRT Working Group and responsible for the Italian multi-center project “Inter-comparison on small field dosimetry” proposed by the SBRT WG.
Professor of Radiotherapy Dosimetry at the Medical Physics Specialization School, University of Florence and serves as editor for Physica Medica. Author and co-author of numerous scientific publications about SRS/SBRT and small field dosimetry.
Silvia Scoccianti
Silvia Scoccianti is head of Radiation Oncology at Santa Maria Annunziata Hospital and Azienda USL Toscana Centro, Italy. She brings expertise in Linac-based radiosurgery, stereotactic radiotherapy and gamma knife radiosurgery for brain metastases, recurrent gliomas, intercranial benign tumors, AVM, and trigeminal neuralgia. She is Head of the Italian Association of Radiotherapy and Clinical Oncology (AIRO) Brain Tumor Group; Chief of the multidisciplinary tumor board for CNS a multi-hospital network of Azienda USL Toscana Centro; and Study director and Principal investigator for multicenter neuro-oncological trials.
Scoccianti co-authored Italian national CNS tumor guidelines published by the Italian Association of Medical Oncology (AIOM). She is author and co-author of numerous scientific publications about primary and secondary brain tumors.
This episode of the Physics World Weekly podcast is a conversation with two physicists, Ada Altieri and Silvia De Monte, who are using their expertise in statistical physics to understand the behaviour of ecological communities.
A century ago, pioneering scientists such as Alfred Lotka and Vito Volterra showed that statistical physics techniques could explain – and even predict – patterns that ecologists observe in nature. At first, this work focused on simple ecosystems containing just one or two species (such as rabbits and foxes), which are relatively easy to model.
Nowadays, though, researchers such as Altieri and De Monte are turning their attention to far more complex communities. One example is the collection of unicellular organisms known as protists that live among plankton in the ocean. Another, closer to home, is the “microbiome” in the human gut, which may contain hundreds or even thousands of species of bacteria.
Modelling these highly interconnected communities is hugely challenging. But as Altieri and De Monte explain, the potential rewards – from identifying “tipping points” in fragile ecosystems to developing new treatments for gut disorders such as irritable bowel syndrome and Crohn’s disease – are great.
This discussion is based on a Perspective article that Altieri (an associate professor at the Laboratory for Matter and Complex Systems at the Université Paris Cité, France) and De Monte (a senior research scientist at the Institute of Biology in the École Normale Supérieure in Paris and the Max Planck Institute for Evolutionary Biology in Ploen, Germany) wrote for the journal EPL, which sponsors this episode of the podcast.
As the number of cancer cases continues to grow, radiation oncology departments are under increasing pressure to treat more and more patients. And as clinical facilities expand to manage this ongoing growth, and technology developments increase the complexity of radiotherapy delivery, there’s an urgent need to optimize the treatment workflow without ramping up time or staffing requirements.
To enable this level of optimization, radiation therapy departments will require an efficient quality management system that can handle both machine and patient quality assurance (QA), works seamlessly with treatment devices from multiple vendors, and provides the time savings required to ease staff workload.
Driven by growth
A case in point is the Moffitt Cancer Center in Florida, which in 2018 shifted all of its QA to SunCHECK, a quality management platform from Sun Nuclear that combines hardware and software to streamline treatment and delivery system QA into one centralized platform. Speaking at a recent Sun Nuclear webinar, clinical physicist Daniel Opp explained that the primary driver for this switch was growth.
Daniel Opp “Having one system means that we’re able to do tests in the same way across all our linacs.” (Courtesy: D Opp)
“In 2018, our physicians were shifting to perform a lot more SBRT [stereotactic body radiation therapy]. Our leadership had plans in motion to add online adaptive planning as well as expand with opening more radiation oncology centres,” he explained.
At that time, the centre was using multiple software platforms and many different imaging phantoms to run its QA, with physicists still relying on manual measurements and qualitative visual assessments. Now, the team performs all machine QA using SunCHECK Machine and almost all patient-specific QA [PSQA] using SunCHECK Patient.
“Our QA software and data were fractured and all over the place,” said Opp. “The move to SunCHECK made sense as it gave us the ability to integrate all measurements, software and databases into a one-stop shop, providing significant time savings and far cleaner record keeping.”
SunCHECK also simplifies QA procedures by consolidating tests. Opp explained that back in 2018, photon tests on the centre’s linacs required five setups, 12 measurements and manually entering values 22 times; SunCHECK reduced this to one setup, four measurements and no manual entries. “This alone gives you an overview of the significant time savings,” he said.
Another benefit is the ability to automate tests and ensure standardization. “If you tell our large group of physicists to do a picket fence test, we’ll all do it a little differently,” Opp explained. “Having one system on which we’re all running the same tests means that we’re able to do the test in the same way across all our linacs.”
Opp noted that SunCHECK displays all required information on an easy-to-read screen, with the patient QA worklist on one side and the machine QA worklist on the other. “You see a snapshot of the clinic and can figure out if there’s anything you need to take care of. It’s very efficient in letting you know when something needs your attention,” he said.
Sansourekidou initiated the switch to SunCHECK after joining UNM in 2020 as its new director of medical physics. At that time the cancer centre was treating about 1000 patients per year. But high patient numbers led to a long waiting list – with roughly three months between referral and the start of treatment – and clear need for the facility to expand.
Patricia Sansourekidou “We saw huge time savings for both monthly and daily QA.” (Courtesy: P Sansourekidou)
Assessing the centre’s QA procedures in 2020 revealed that the team was using a wide variety of QA software, making routine checks time consuming. Monthly linac QA, for example, required roughly 32 files and took about 14 hours to perform. In addition, Sansourekidou noted, physicists were spending hours every month adjusting the machines. “One day it was the energy that was off and then the output was off; I soon realised that, in the absence of appropriate software, we were making adjustments back and forth,” she said. “More importantly, we had no way to track these trends.”
Sansourekidou concluded that the centre needed an improved QA solution based on one unified platform. “So we went on a physics hunt,” she said. “We met with every vendor out there and Sun Nuclear won the request for proposal. So we implemented SunCHECK Machine and SunCHECK Patient.”
Switching to SunCHECK reduced monthly QA to just 4–5 hours per linac. “We’re saving about nine hours per linac per month; that’s 324 hours per year when we could be doing something else for our patients,” said Sansourekidou. Importantly, the new software enables the team to visualize trends and assess whether a genuine problem is present.
For daily QA, which previously required numerous spreadsheets and systems, SunCHECK’s daily QA template provides time savings of about 60%. “At six in the morning, that’s important,” Sansourekidou pointed out. Annual QA saw roughly 33% time savings, while for the 70% of patients requiring PSQA, time savings were about 25%.
Another “unexpected side effect” of deploying SunCHECK, said Sansourekidou, is that the IT department was happy to maintain one platform. “Every time we have a new physicist, it’s much easier for our IT department to set them up. That has been a huge benefit for us,” she said. “Additionally, our service engineers are happy because we are not spending hours of their time adjusting the machine back and forth.”
“Overall, I thought there were great improvements that really helped us justify the initial investment – not just monetary, but also time investment from our physics team,” she said.
Efficiency savings QA times before and after implementing SunCHECK at the UNM Comprehensive Cancer Center. (Courtesy: Patricia Sansourekidou)
Phantom-free QA
For Opp, one of the biggest features enabled by SunCHECK was the move to phantom-free PSQA, which saves a lot of time and eliminates errors that can be inherent to phantom-based QA. In the last year, the Moffitt team also switched to using DoseCHECK – SunCHECK’s secondary 3D dose calculation algorithm – as the foundation of its quality checks. Alongside, a RayStation script checks plan deliverability to ensure that no problems arise once the patient is on the table.
“We don’t do our pre-treatment QA anymore. We rely on those two to get confidence into the final work and then we run our logs off the first patient fraction,” Opp explained. “We have a large physics group and there was natural apprehension, but everybody got on board and agreed that this was a shift we needed to make. We leveraged DoseCHECK to create a better QA system for ourselves.”
Since 2018, both patient workload and staff numbers at the Moffitt Cancer Center have doubled. By the end of 2025, it will also have almost doubled its number of treatment units. The centre has over 100 SunCHECK users – including therapists, dosimetrists and physicists – and Opp emphasized that the system is robust enough to handle all these users doing different tasks at different times without any issues.
As patient numbers increase, the time savings conferred by SunCHECK help reduce staff workload and improve quality-of-life for users. The centre currently performs about 100 PSQA procedures per week, which would have taken about 37 hours using previous QA processes – a workload that Opp notes would not be managed well. SunCHECK reduced the weekly average to around seven hours.
Similarly, linac QA previously required two or three late nights per month (or one full day on the weekend). “After the switch to SunCHECK, everybody’s pretty much able to get it done in one late night per month,” said Opp. He added that the Moffitt Cancer Center’s continuing growth has required the onboarding of many new physicists – and that it’s significantly easier to train these new staff with all of the QA software in one centralized platform.
Enabling accreditation
Finally, accreditation is essential for radiation oncology departments to demonstrate the ability to deliver safe, high-quality care. The UNM Comprehensive Cancer Centre’s previous American College of Radiology (ACR) accreditation had expired before Sansourekidou’s arrival, and she was keen to rectify this situation. And in March 2024 the centre achieved ASTRO’s APEx accreditation.
“SunCHECK helped with that,” she said. “It wasn’t the only reason, there were other things that we had to improve, but we did come across as having a strong physics programme.”
Achieving accreditation also helps justify the purchase of a totally new QA platform, Sansourekidou explained. “The most important thing to explain to your administration is that if we don’t do things the way that our regulatory bodies advise, then not only will we lose our accreditation, but we will fall behind,” she said.
Sansourekidou emphasized that the efficiency gains conferred by SunCHECK were invaluable for the physics team, particularly for out-of-hours working. “We saw huge time savings for both monthly and daily QA,” she said. “It is a large investment, but improving efficiency through investment in software will really help the department in the long term.”