↩ Accueil

Vue lecture

Michele Dougherty steps aside as president of the Institute of Physics

The space physicist Michele Dougherty has stepped aside as president of the Institute of Physics, which publishes Physics World. The move was taken to avoid any conflicts of interest given her position as executive chair of the Science and Technology Facilities Council (STFC) – one of the main funders of physics research in the UK.

Dougherty, who is based at Imperial College London, spent two years as IOP president-elect from October 2023 before becoming president in October 2025. Dougherty was appointed executive chair of the STFC in January 2025 and in July that year was also announced as the next Astronomer Royal – the first woman to hold the position.

The changes at the IOP come in the wake of UK Research and Innovation (UKRI) stating last month that it will be adjusting how it allocates government funding for scientific research and infrastructure. Spending on curiosity-driven research will remain flat from 2026 to 2030, with UKRI prioritising funding in three key areas or “buckets”.

The three buckets are: curiosity-driven research, which will be the largest; strategic government and societal priorities; and supporting innovative companies. There will also be a fourth “cross-cutting” bucket with funding for infrastructure, facilities and talent. In the four years to 2030, UKRI’s budget will be £38.6bn.

While the detailed implications of the funding changes are still to be worked out, the IOP says its “top priority” is understanding and responding to them. With the STFC being one of nine research councils within UKRI, Dougherty is stepping aside as IOP president to ensure the IOP can play what it says is “a leadership role in advocating for physics without any conflict of interest”.

In her role as STFC executive chair, Dougherty yesterday wrote to the UK’s particle physics, astronomy and nuclear physics community, asking researchers to identify by March how their projects would respond to flat cash as well as reductions of 20%, 40% and 60% – and to “identify the funding point at which the project becomes non-viable”. The letter says that a “similar process” will happen for facilities and labs.

In her letter, Dougherty says that the UK’s science minister Lord Vallance and UKRI chief executive Ian Chapman want to protect curiosity-driven research, which they say is vital, and grow it “as the economy allows”. However, she adds, “the STFC will need to focus our efforts on a more concentrated set of priorities, funded at a level that can be maintained over time”.

Tom Grinyer, chief executive officer of the IOP, says that the IOP is “fully focused on ensuring physics is heard clearly as these serious decisions are shaped”. He says the IOP is “gathering insight from across the physics community and engaging closely with government, UKRI and the research councils so that we can represent the sector with authority and evidence”.

Grinyer warns, however, that UKRI’s shift in funding priorities and the subsequent STFC funding cuts will have “severe consequences” for physics. “The promised investment in quantum, AI, semiconductors and green technologies is welcome but these strengths depend on a stable research ecosystem,” he says.

“I want to thank Michele for her leadership, and we look forward to working constructively with her in her capacity at STFC as this important period for physics unfolds,” adds Grinyer.

Next steps

The nuclear physicist Paul Howarth, who has been IOP president-elect since September, will now take on Dougherty’s responsibilities – as prescribed by the IOP’s charter – with immediate effect, with the IOP Council discussing its next steps at its February 2026 meeting.

With a PhD in nuclear physics, Howarth has had a long career in the nuclear sector working on the European Fusion Programme and at British Nuclear Fuels, as well as co-founding the Dalton Nuclear Institute at the University of Manchester.

He was a non-executive board director of the National Physical Laboratory and until his retirement earlier this year was chief executive officer of the National Nuclear Laboratory.

In response to the STFC letter, Howarth says that the projected cuts “are a devastating blow for the foundations of UK physics”.

“Physics isn’t a luxury we can afford to throw away through confusion,” says Howarth. “We urge the government to rethink these cuts, listen to the physics community, and deliver to a 10-year strategy to secure physics for the future.”

The post Michele Dougherty steps aside as president of the Institute of Physics appeared first on Physics World.

  •  

Physicist Norbert Holtkamp takes over as head of Fermilab

Norbert Holtkamp
Particle pioneer: One of Holtkamp’s main aims will be to oversee the completion of the $1.5bn Long-Baseline Neutrino Facility-Deep Underground Neutrino Experiment (courtesy: JJ Starr, Fermilab)

Particle physicist Norbert Holtkamp has been appointed the new director of Fermi National Accelerator Laboratory. He took up the position on 12 January, replacing Young-Kee Kim from the University of Chicago, who held the job on an interim basis following the resignation of Lia Merminga last year.

With a PhD in physics from the Technical University in Darmstadt, Germany, Holtkamp has managed large scientific projects throughout his career.

Holtkamp is the former deputy director of the SLAC National Accelerator Laboratory at Stanford University where he managedthe construction of the Linac Coherent Light Source upgrade, the world’s most powerful X-ray laser, along with more than $2bn of onsite construction projects.

Holtkamp also previously served as the principal deputy director general for the international fusion project ITER, which is currently under construction in Cadarache, France.

Holtkamp worked at Fermilab between 1998 and 2001, where he worked on commissioning the Main Injector and also led a study on the feasibility of an intense neutrino source based on a muon storage ring.

One of Holtkamp’s main aims as Fermilab boss will be to oversee the completion of the $5bn Long-Baseline Neutrino Facility-Deep Underground Neutrino Experiment (LBNF-DUNE) at Fermilab, which is expected to come online towards the end of the decade.

LBNF-DUNE will study the properties of neutrinos in unprecedented detail, as well as the differences in behaviour between neutrinos and antineutrinos. The DUNE detector, which lies about 1300 km from Fermilab, will measure the neutrinos that are generated by Fermilab’s accelerator complex, which is just outside Chicago.

In a statement, Holtkamp said he is “deeply honoured” to lead the lab. “Fermilab has done so much to advance our collective understanding of the fundamentals of our universe,” he says. “I am committed to ensuring the laboratory remains the neutrino capital of the world, and the safe and successful completion of LBNF-DUNE is key to that goal. I’m excited to rejoin Fermilab at this pivotal moment to guide this project and our other important modernization efforts to prepare the lab for a bright future.”

Managerial experience

Fermilab has experienced a difficult few years, with questions raised about its internal management and external oversight. In August 2024 a group of anonymous self-styled whistleblowers published a 113-page “white paper” on the arXiv preprint server, asserting that the lab was “doomed without a management overhaul”.

Then in October that year, a new organization – Fermi Forward Discovery Group – was announced to manage the lab for the US Department of Energy. That move came under scrutiny given it is dominated by the University of Chicago and Universities Research Association (URA), a consortium of research universities, which had already been part of the management since 2007. Then a month later, almost 2.5% of Fermilab’s employees were laid off.

“We’re excited to welcome Norbert, who brings of a wealth of scientific and managerial experience to Fermilab,” noted University of Chicago president Paul Alivisatos, who is also chair of the board of directors of Fermi Forward Discovery Group.

Alivisatos thanked Kim for her “tireless service” as director. “[Kim] played a critical role in strengthening relationships with Fermilab’s leading stakeholders, driving the lab’s modernization efforts, and positioning Fermilab to amplify DOE’s broader goals in areas like quantum science and AI,” added Alivisatos.

The post Physicist Norbert Holtkamp takes over as head of Fermilab appeared first on Physics World.

  •  

Winning the popularity contest: the 10 most-read physics stories of 2025

Popularity isn’t everything. But it is something, so for the second year running, we’re finishing our trip around the Sun by looking back at the physics stories that got the most attention over the past 12 months. Here, in ascending order of popularity, are the 10 most-read stories published on the Physics World website in 2025.

10. Quantum on the brain

We’ve had quantum science on our minds all year long, courtesy of 2025 being UNESCO’s International Year of Quantum Science and Technology. But according to theoretical work by Partha Ghose and Dimitris Pinotsis, it’s possible that the internal workings of our brains could also literally be driven by quantum processes.

Though neurons are generally regarded as too big to display quantum effects, Ghose and Pinotsis established that the equations describing the classical physics of brain responses are mathematically equivalent to the equations describing quantum mechanics. They also derived a Schrödinger-like equation specifically for neurons. So if you’re struggling to wrap your head around complex quantum concepts, take heart: it’s possible that your brain is ahead of you.

9. Could an extra time dimension reconcile quantum entanglement with local causality?

Illustration of time
Testing times A toy model from Marco Pettini seeks to reconcile quantum entanglement with Einstein’s theory of relativity. (Courtesy: Shutterstock/Eugene Ivanov)

Einstein famously disliked the idea of quantum entanglement, dismissing its effects as “spooky action at a distance”. But would he have liked the idea of an extra time dimension any better? We’re not sure he would, but that is the solution proposed by theoretical physicist Marco Pettini, who suggests that wavefunction collapse could propagate through a second time dimension. Pettini got the idea from discussions with the Nobel laureate Roger Penrose and from reading old papers by David Bohm, but not everyone is impressed by these distinguished intellectual antecedents. In this article, Bohm’s former student and frequent collaborator Jeffrey Bub went on the record to say he “wouldn’t put any money on” Pettini’s theory being correct. Ouch.

8. And now for something completely different

Continuing the theme of intriguing, blue-sky theoretical research, the eighth-most-read article of 2025 describes how two theoretical physicists, Kaden Hazzard and Zhiyuan Wang, proposed a new class of quasiparticles called paraparticles. Based on their calculations, these paraparticles exhibit quantum properties that are fundamentally different from those of bosons and fermions. Notably, paraparticles strikes a balance between the exclusivity of fermions and the clustering tendency of bosons, with up to two paraparticles allowed to occupy the same quantum state (rather than zero for fermions or infinitely many for bosons). But do they really exist? No-one knows yet, but Hazzard and Wang say that experimental studies of ultracold atoms could hold the answer.

7. Shining a light on obscure Nobel prizes

A photo of bright red flowers in a vase. The colours are very vivid
Capturing colour A still life taken by Lippmann using his method sometime between 1890 and 1910. By the latter part of this period, the method had fallen out of favour, superseded by the simpler Autochrome process. (Courtesy: Photo in public domain)

The list of early Nobel laureates in physics is full of famous names – Roentgen, Curie, Becquerel, Rayleigh and so on. But if you go down the list a little further, you’ll find that the 1908 prize went to a now mostly forgotten physicist by the name of Gabriel Lippmann, for a version of colour photography that almost nobody uses (though it’s rather beautiful, as the photo shows). This article tells the story of how and why this happened. A companion piece on the similarly obscure 1912 laureate, Gustaf Dalén, fell just outside this year’s top 10; if you’re a member of the Institute of Physics, you can read both of them together in the November issue of Physics World.

6. How to teach quantum physics to everyone

Why should physicists have all the fun of learning about the quantum world? This episode of the Physics World Weekly podcast focuses on the outreach work of Aleks Kissinger and Bob Coecke, who developed a picture-driven way of teaching quantum physics to a group of 15-17-year-old students. One of the students in the original pilot programme, Arjan Dhawan, is now studying mathematics at the University of Durham, and he joined his former mentors on the podcast to answer the crucial question: did it work?

5. A great physicist’s Nobel-prize-winning mistake

Albert Einstein and Niels Bohr
Conflicting views Stalwart physicists Albert Einstein and Niels Bohr had opposing views on quantum fundamentals from early on, which turned into a lifelong scientific argument between the two. (Paul Ehrenfest/Wikimedia Commons)

Niels Bohr had many good ideas in his long and distinguished career. But he also had a few that didn’t turn out so well, and this article by science writer Phil Ball focuses on one of them. Known as the Bohr-Kramers-Slater (BKS) theory, it was developed in 1923 with help from two of the assistants/students/acolytes who flocked to Bohr’s institute in Copenhagen. Several notable physicists hated it because it violated both causality and the conservation of energy, and within two years, experiments by Walther Boethe and Hans Geiger proved them right. The twist, though, is that Boethe went on to win a share of the 1954 Nobel Prize for Physics for this work – making Bohr surely one of the only scientists who won himself a Nobel Prize for his good ideas, and someone else a Nobel Prize for a bad one.

4. Reconciling the ideas of Einstein and Newton

Black holes are fascinating objects in their own right. Who doesn’t love the idea of matter-swallowing cosmic maws floating through the universe? For some theoretical physicists, though, they’re also a way of exploring – and even extending – Einstein’s general theory of relativity. This article describes how thinking about black hole collisions inspired Jiaxi Wu, Siddharth Boyeneni and Elias Most to develop a new formulation of general relativity that mirrors the equations that describe electromagnetic interactions. According to this formulation, general relativity behaves the same way as the gravitational described by Isaac Newton more than 300 years ago, with the “gravito-electric” field fading with the inverse square of distance.

3. A list of the century’s best Nobel Prizes for Physics – so far

“Best of” lists are a real win-win. If you agree with the author’s selections, you go away feeling confirmed in your mutual wisdom. If you disagree, you get to have a good old moan about how foolish the author was for forgetting your favourites or including something you deem unworthy. Either way, it’s a success – as this very popular list of the top 5 Nobel Prizes for Physics awarded since the year 2000 (as chosen by Physics World editor-in-chief Matin Durrani) demonstrates.

2. Building bridges between gravity and quantum information theory

We’re back to black holes again for the year’s second-most-read story, which focuses on a possible link between gravity and quantum information theory via the concept of entropy. Such a link could help explain the so-called black hole information paradox – the still-unresolved question of whether information that falls into a black hole is retained in some form or lost as the black hole evaporates via Hawking radiation. Fleshing out this connection could also shed light on quantum information theory itself, and the theorist who’s proposing it, Ginestra Bianconi, says that experimental measurements of the cosmological constant could one day verify or disprove it.

1. The simplest double-slit experiment

Graphic showing a red laser beam illuminating a pair of atoms. A screen behind the atoms shows red and black interference fringes
Experiment schematic Two single atoms floating in a vacuum chamber are illuminated by a laser beam and act as the two slits. The interference of the scattered light is recorded with a highly sensitive camera depicted as a screen. Incoherent light appears as background and implies that the photon has acted as a particle passing only through one slit. (Courtesy: Wolfgang Ketterle, Vitaly Fedoseev, Hanzhen Lin, Yu-Kun Lu, Yoo Kyung Lee and Jiahao Lyu)

Back in 2002, readers of Physics World voted Thomas Young’s electron double-slit experiment “the most beautiful experiment in physics”. More than 20 years later, it continues to fascinate the physics community, as this, the most widely read article of any that Physics World published in 2025, shows.

Young’s original experiment demonstrated the wave-like nature of electrons by sending them through a pair of slits and showing that they create an interference pattern on a screen even when they pass through the slits one-by-one. In this modern update, physicists at the Massachusetts Institute of Technology (MIT), US, stripped this back to the barest possible bones.

Using two single atoms as the slits, they inferred the path of photons by measuring subtle changes in the atoms’ properties after photon scattering. Their results matched the predictions of quantum theory: interference fringes when they didn’t observe the photons’ path, and two bright spots when they did.

It’s an elegant result, and the fact that the MIT team performed the experiment specifically to celebrate the International Year of Quantum Science and Technology 2025 makes its popularity with Physics World readers especially gratifying.

So here’s to another year full of elegant experiments and the theories that inspire them. Long may they both continue, and thank you, as always, for taking the time to read about them.

The post Winning the popularity contest: the 10 most-read physics stories of 2025 appeared first on Physics World.

  •  

Semiconductor laser pioneer Susumu Noda wins 2026 Rank Prize for Optoelectronics

Susumu Noda of Kyoto University has won the 2026 Rank Prize for Optoelectronics for the development of the Photonic Crystal Surface Emitting Laser (PCSEL). For more than 25 years, Noda developed this new form of laser, which has potential applications in high-precision manufacturing as well as in LIDAR technologies.

Following the development of the laser in 1960, in more recent decades optical fibre lasers and semiconductor lasers have become competing technologies.

A semiconductor laser works by pumping an electrical current into a region where an n-doped (excess of electrons) and a p-doped (excess of “holes”) semiconductor material meet, causing electrons and holes to combine and release photons.

Semiconductors have several advantages in terms of their compactness, high “wallplug” efficiency, and ruggedness, but lack in other areas such as having a low brightness and functionality.

This means that conventional semiconductor lasers required external optical and mechanical elements to improve their performance, which results in large and impractical systems.

‘A great honour’

In the late 1990s, Noda began working on a new type of semiconductor laser that could challenge the performance of optical fibre lasers. These so-called PCSELs employ a photonic crystal layer  in between the semiconductor layers. Photonic crystals are nanostructured materials in which a periodic variation of the dielectric constant — formed, for example, by a lattice of holes — creates a photonic band-gap.

Noda and his research made a series of breakthrough in the technology such as demonstrating control of polarization and beam shape by tailoring the phonic crystal structure and expansion into blue–violet wavelengths.

The resulting PCSELs emit a high-quality, symmetric beam with narrow divergence and boast high brightness and high functionality while maintaining the benefits of conventional semiconductor lasers. In 2013, 0.2 W PCSELs became available and a few years later Watt-class PCSEL lasers became operational.

Noda says that it is “a great honour and a surprise” to receive the prize. “I am extremely happy to know that more than 25 years of research on photonic-crystal surface-emitting lasers has been recognized in this way,” he adds. “I do hope to continue to further develop the research and its social implementation.”

Susumu Noda received his BSc and then PhD in electronics from Kyoto University in 1982 and 1991, respectively. From 1984 he also worked at Mitsubishi Electric Corporation, before joining Kyoto University in 1988 where he is currently based.

Founded in 1972 by the British industrialist and philanthropist Lord J Arthur Rank, the Rank Prize is awarded biennially in nutrition and optoelectronics. The 2026 Rank Prize for Optoelectronics, which has a cash award of £100 000, will be awarded formally at an event held in June.

The post Semiconductor laser pioneer Susumu Noda wins 2026 Rank Prize for Optoelectronics appeared first on Physics World.

  •  
❌