↩ Accueil

Vue lecture

Ask me anything: Muhammad Hamza Waseem – ‘The most important skill is creativity’

Waseem completed his DPhil in physics at the University of Oxford in the UK, where he worked on applied process-relational philosophy and employed string diagrams to study interpretations of quantum theory, constructor theory, wave-based logic, quantum computing and natural language processing. At Oxford, Waseem continues to teach mathematics and physics at Magdalen College, the Mathematical Institute, and the Department of Computer Science.

Waseem has played a key role in organizing the Lahore Science Mela, the largest annual science festival in Pakistan. He also co-founded Spectra, an online magazine dedicated to training popular-science writers in Pakistan. For his work popularizing science he received the 2021 Diana Award, was highly commended at the 2021 SEPnet Public Engagement Awards, and won an impact award in 2024 from Oxford’s Mathematical, Physical and Life Sciences (MPLS) division.

What skills do you use every day in your job?

I’m a theoretical physicist, so if you’re thinking about what I do every day, I use chalk and a blackboard, and maybe a pen and paper. However, for theoretical physics, I believe the most important skill is creativity, and the ability to dream and imagine.

What do you like best and least about your job?

That’s a difficult one because I’ve only been in this job for a few weeks. What I like about my job is the academic freedom and the opportunity to work on both education and research. My role is divided 50/50, so 50% of the time I’m thinking about the structure of natural languages like English and Urdu, and how to use quantum computers for natural language processing. The other half is spent using our diagrammatic formalism called “quantum picturalism” to make quantum physics accessible to everyone in the world. So, I think that’s the best part. On the other hand, when you have a lot of smart people together in the same room or building, there can be interpersonal issues. So, the worst part of my job is dealing with those conflicts.

What do you know today, that you wish you knew when you were starting out in your career?

It’s a cynical view, but I think scientists are not always very rational or fair in their dealings with other people and their work. If I could go back and give myself one piece of advice, it would be that sometimes even rational and smart people make naive mistakes. It’s good to recognize that, at the end of the day, we are all human.

The post Ask me anything: Muhammad Hamza Waseem – ‘The most important skill is creativity’ appeared first on Physics World.

  •  

Teaching university physics doesn’t have to be rocket science

Last year the UK government placed a new cap of £9535 on annual tuition fees, a figure that will likely rise in the coming years as universities tackle a funding crisis. Indeed, shortfalls are already affecting institutions, with some saying they will run out of money in the next few years. The past couple of months alone have seen several universities announce plans to shed academic staff and even shut departments.

Whether you agree with tuition fees or not, the fact is that students will continue to pay a significant sum for a university education. Value for money is part of the university proposition and lecturers can play a role by conveying the excitement of their chosen field. But what are the key requirements to help do so? In the late 1990s we carried out a study aimed at improving the long-term performance of students who initially struggled with university-level physics.

With funding from the Higher Education Funding Council for Wales, the study involved structured interviews with 28 students and 17 staff. An internal report – The Rough Guide to Lecturing – was written which, while not published, informed the teaching strategy of Cardiff University’s physics department for the next quarter of a century.

From the findings we concluded that lecture courses can be significantly enhanced by simply focusing on three principles, which we dub the three “E”s. The first “E” is enthusiasm. If a lecturer appears bored with the subject – perhaps they have given the same course for many years – why should their students be interested? This might sound obvious, but a bit of reading, or examining the latest research, can do wonders to freshen up a lecture that has been given many times before.

For both old and new courses it is usually possible to highlight at least one research current paper in a semester’s lectures. Students are not going to understand all of the paper, but that is not the point – it is the sharing in contemporary progress that will elicit excitement. Commenting on a nifty experiment in the work, or the elegance of the theory, can help to inspire both teacher and student.

As well as freshening up the lecture course’s content, another tip is to mention the wider context of the subject being taught, perhaps by mentioning its history or possible exciting applications. Be inventive –we have evidence of a lecturer “live” translating parts of Louis de Broglie’s classic 1925 paper “La relation du quantum et la relativité” during a lecture. It may seem unlikely, but the students responded rather well to that.

Supporting students

The second “E” is engagement. The role of the lecturer as a guide is obvious, but it should also be emphasized that the learner’s desire is to share the lecturer’s passion for, and mastery of, a subject. Styles of lecturing and visual aids can vary greatly between people, but the important thing is to keep students thinking.

Don’t succumb to the apocryphal definition of a lecture as only a means of transferring the lecturer’s notes to the student’s pad without first passing through the minds of either person. In our study, when the students were asked “What do you expect from a lecture?”, they responded simply to learn something new, but we might extend this to a desire to learn how to do something new.

Simple demonstrations can be effective for engagement. Large foam dice, for example, can illustrate the non-commutation of 3D rotations. Fidget-spinners in the hands of students can help explain the vector nature of angular momentum. Lecturers should also ask rhetorical questions that make students think, but do not expect or demand answers, particularly in large classes.

More importantly, if a student asks a question, never insult them – there is no such thing as a “stupid” question. After all, what may seem a trivial point could eliminate a major conceptual block for them. If you cannot answer a technical query, admit it and say you will find out for next time – but make sure you do. Indeed, seeing that the lecturer has to work at the subject too can be very encouraging for students.

The final “E” is enablement. Make sure that students have access to supporting material. This could be additional notes; a carefully curated reading list of papers and books; or sets of suitable interesting problems with hints for solutions, worked examples they can follow, and previous exam papers. Explain what amount of self-study will be needed if they are going to benefit from the course.

Have clear and accessible statements concerning the course content and learning outcomes – in particular, what students will be expected to be able to do as a result of their learning. In our study, the general feeling was that a limited amount of continuous assessment (10–20% of the total lecture course mark) encourages both participation and overall achievement, provided students are given good feedback to help them improve.

Next time you are planning to teach a new course, or looking through those decades-old notes, remember enthusiasm, engagement and enablement. It’s not rocket science, but it will certainly help the students learn it.

The post Teaching university physics doesn’t have to be rocket science appeared first on Physics World.

  •  

Tiny island, big science: the North Ronaldsay Science Festival

Sometimes, you just have to follow your instincts and let serendipity take care of the rest.

North Ronaldsay, a remote island north of mainland Orkney, has a population of about 50 and a lot of sheep. In the early 19th century, it thrived on the kelp ash industry, producing sodium carbonate (soda ash), potassium salts and iodine for soap and glass making.

But when cheaper alternatives became available, the island turned to its unique breed of seaweed-eating sheep. In 1832 islanders built a 12-mile-long dry stone wall around the island to keep the sheep on the shore, preserving inland pasture for crops.

My connection with North Ronaldsay began last summer when my partner, Sue Bowler, and I volunteered for the island’s Sheep Festival, where teams of like minded people rebuild sections of the crumbling wall. That experience made us all the more excited when we learned that North Ronaldsay also had a science festival.

This year’s event took place on 14–16 March and getting there was no small undertaking. From our base in Leeds, the journey involved a 500-mile drive to a ferry, a crossing to Orkney mainland, and finally, a flight in a light aircraft. With just 50 inhabitants, we had no idea how many people would turn up but instinct told us it was worth the trip.

Sue, who works for the Royal Astronomical Society (RAS), presented Back to the Moon, while together we ran hands-on maker activities, a geology walk and a trip to the lighthouse, where we explored light beams and Fresnel lenses.

The Yorkshire Branch of the Institute of Physics (IOP) provided laser-cut hoist kits to demonstrate levers and concepts like mechanical advantage, while the RAS shared Connecting the Dots – a modern LED circuit version of a Victorian after-dinner card set illustrating constellations.

Four photos of children and adults creating structures from cardboard
Hands-on science Participants get stuck into maker activities at the festival. (Courtesy: @Lazy.Photon on Instagram)

Despite the island’s small size, the festival drew attendees from neighbouring islands, with 56 people participating in person and another 41 joining online. Across multiple events, the total accumulated attendance reached 314.

One thing I’ve always believed in science communication is to listen to your audience and never make assumptions. Orkney has a rich history of radio and maritime communications, shaped in part by the strategic importance of Scapa Flow during the Second World War.

Two photos of adults pressing LEDs into a picture of Orion the hunter
Stars in their eyes Making a constellation board at the North Ronaldsay Science Festival. (Courtesy: @Lazy.Photon on Instagram)

The Orkney Wireless Museum is a testament to this legacy, and one of our festival guests had even reconstructed a working 1930s Baird television receiver for the museum.

Leaving North Ronaldsay was hard. The festival sparked fascinating conversations, and I hope we inspired a few young minds to explore physics and astronomy.

  • The author would like to thanks Alexandra Wright (festival organizer), Lucinda Offer (education, outreach and events officer at the RAS) and Sue Bowler (editor of Astronomy & Geophysics)

The post Tiny island, big science: the North Ronaldsay Science Festival appeared first on Physics World.

  •  

LEGO interferometer aims to put quantum science in the spotlight

We’ve had the LEGO Large Hadron Collider, a LEGO-based quantum computer and even a LEGO Kibble balance. But now you can now add a LEGO interferometer to that list thanks to researchers from the University of Nottingham.

Working with “student LEGO enthusiasts”, they have developed a fully functional LEGO interferometer kit that consists of lasers, mirrors, beamsplitters and, of course, some LEGO bricks.

The set, designed as a teaching aid for secondary-school pupils and older, is aimed at making quantum science more accessible and engaging as well as demonstrating the basic principles of interferometry such as interference patterns.

“Developing this project made me realise just how incredibly similar my work as a quantum scientist is to the hands-on creativity of building with LEGO,” notes Nottingham quantum physicist Patrik Svancara. “It’s an absolute thrill to show the public that cutting-edge research isn’t just complex equations. It’s so much more about curiosity, problem-solving, and gradually bringing ideas to life, brick by brick!”

A team at Cardiff University will now work on the design and develop materials that can be used to train science teachers with the hope that the sets will eventually be made available throughout the UK.

“We are sharing our experiences, LEGO interferometer blueprints, and instruction manuals across various online platforms to ensure our activities have a lasting impact and reach their full potential,” adds Svancara.

If you want to see the LEGO interferometer in action for yourself then it is being showcased at the Cosmic Titans: Art, Science, and the Quantum Universe exhibition at Nottingham’s Djanogly Art Gallery, which runs until 27 April.

The post LEGO interferometer aims to put quantum science in the spotlight appeared first on Physics World.

  •