Why nothing beats the buzz of being in a small hi-tech business
A few months ago, I attended a presentation and reception at the Houses of Parliament in London for companies that had won Business Awards from the Institute of Physics in 2024. What excited me most at the event was hearing about the smaller start-up companies and their innovations. They are developing everything from metamaterials for sound proofing to instruments that can non-invasively measure pressure in the human brain.
The event also reminded me of my own experience working in the small-business sector. After completing my PhD in high-speed aerodynamics at the University of Southampton, I spent a short spell working for what was then the Defence and Evaluation Research Agency (DERA) in Farnborough. But wanting to stay in Southampton, I decided working permanently at DERA wasn’t right for me so started looking for a suitable role closer to home.
I soon found myself working as a development engineer at a small engineering company called Stewart Hughes Limited. It was founded in 1980 by Ron Stewart and Tony Hughes, who had been researchers at the Institute of Sound and Vibration Research (ISVR) at Southampton University. Through numerous research contracts, the pair had spent almost a decade developing techniques for monitoring the condition of mechanical machinery from their vibrations.
By attaching accelerometers or vibration sensors to the machines, they discovered that the resulting signals can be processed to determine the physical condition of the devices. Their particular innovation was to find a way to both capture and process the accelerometer signals in near real time to produce indicators relating to the health of the equipment being monitored. It required a combination of hardware and software that was cutting edge at the time.
Exciting times
Although I did not join the firm until early 1994, it still had all the feel of a start-up. We were located in a single office building (in reality it was a repurposed warehouse) with 50 or so staff, about 40 of whom were electronics, software and mechanical engineers. There was a strong emphasis on “systems engineering” – in other words, integrating different disciplines to design and build an overarching solution to a problem.
In its early years, Stewart Hughes had developed a variety of applications for their vibration health monitoring technique. It was used in all sorts of areas, ranging from conveyor belts carrying coal and Royal Navy ships travelling at sea to supersized trucks working on mines. But when I joined, the company was focused on helicopter drivetrains.
In particular, the company had developed a product called Health and Usage Monitoring System (HUMS). The UK’s Civil Aviation Authority required this kind of device to be fitted on all helicopters transporting passengers to and from oil platforms in the North Sea to improve operational safety. Our equipment (and that of rival suppliers – we did not have a monopoly) was used to monitor mechanical parts such as gears, bearings, shafts and rotors.
For someone straight out of university, it was an exciting time. There were lots of technical challenges to be solved, including designing effective ways to process signals in noisy environments and extracting information about critical drivetrain components. We then had to convert the data into indicators that could be monitored to detect and diagnose mechanical issues.
As a physicist, I found myself working closely with the engineers but tended to approach things from a more fundamental angle, helping to explain why certain approaches worked and others didn’t. Don’t forget that the technology developed by Stewart Hughes wasn’t used in the comfort of a physics lab but on a real-life working helicopter. That meant capturing and processing data on the airborne helicopter itself using bespoke electronics to manage high onboard data rates.
After the data were downloaded, they had to be sent on floppy disks or other portable storage devices to ground stations. There the results would be presented in a form to allow customers and our own staff to interpret and diagnose any mechanical problems. We also had to develop ways to monitor an entire fleet of helicopters, continuously learning and developing from experience.
Steward Hughes’s innovative and successful HUMS technology, which was the first of its kind to be flown on a North Sea helicopter, saw the company win Queen’s Awards on two separate occasions. The first was in 1993 for “export achievement” and the second was in 1998 for “technological achievement”. By the end of 1998 the company was bought by Smiths Industries, which in turn was acquired by General Electric in 2007.
Stormy days
If it all sounds as if working in a small business is plain sailing, well it rarely is. A few years before I joined, Stewart Huges had ridden out at least one major storm when it was forced to significantly reduce the workforce because anticipated contracts did not materialize. “Black Friday”, as it became known, made the board of directors nervous about taking on additional employees, often relying on existing staff to work overtime instead.
This arrangement actually suited many of the early-career employees, who were keen to quickly expand their work experience and their pay packet. But when I arrived, we were once again up against cash-flow challenges, which is the bane of any small business. Back then there were no digital electronic documents and web portals, which led to some hairy situations.
I can recall several occasions when the company had to book a despatch rider for 2 p.m. on a Friday afternoon to dash a report up the motorway to the Ministry of Defence in London. If we hadn’t got an approval signature and contractual payment before the close of business on the same day, the company literally wouldn’t have been able to open its doors on Monday morning.
Being part of a small company was undoubtedly a formative part of my early career experience
At some stage, however, the company’s bank lost patience with this hand-to-mouth existence and the board of directors was told to put the firm on a more solid financial footing. This edict led to the company structure becoming more formal and the directors being less accessible, with a seasoned professional brought in to help run the business. The resulting change in strategic trajectory eventually led to its sale.
Being part of a small company was undoubtedly a formative part of my early career experience. It was an exciting time and the fact all employees were – literally – under one roof meant that we knew and worked with the decision makers. We always had the opportunity to speak up and influence the future. We got to work on unexpected new projects because there was external funding available. We could be flexible when it came to trying out new software or hardware as part of our product development.
The flip side was that we sometimes had to flex too much, which at times made it hard to stick to a cohesive strategy. We struggled to find cash to try out blue sky or speculative approaches – although there were plenty of good ideas. These advantages come with being part of a larger corporation with bigger budgets and greater overall stability.
That said, I appreciate the diverse and dynamic learning curve I experienced at Stewart Hughes. The founders were innovators, whose vision and products have stood the test of time, still being widely used today . The company benefited many people not just the staff who led successful careers but also the pilots and passengers on helicopters whose lives may potentially have been saved.
Working in a large corporation is undoubtedly a smoother ride than in a small business. But it’s rarely seat-of-the-pants stuff and I learned so much from my own days at Stewart Hughes. Attending the IOP’s business awards reminded me of the buzz of being in a small firm. It might not be to everyone’s taste, but if you get the chance to work in that environment, do give it serious thought.
The post Why nothing beats the buzz of being in a small hi-tech business appeared first on Physics World.