Perovskite solar cells can be completely recycled
A research team headed up at Linköping University in Sweden and Cornell University in the US has succeeded in recycling almost all of the components of perovskite solar cells using simple, non-toxic, water-based solvents. What’s more, the researchers were able to use the recycled components to make new perovskite solar cells with almost the same power conversion efficiency as those created from new materials. This work could pave the way to a sustainable perovskite solar economy, they say.
While solar energy is considered an environmentally friendly source of energy, most of the solar panels available today are based on silicon, which is difficult to recycle. This has led to the first generation of silicon solar panels, which are reaching the end of their life cycles, ending up in landfills, says Xun Xiao, one of the team members at Linköping University.
When developing emerging solar cell technologies, we therefore need to take recycling into consideration, adds one of the leaders of the new study, Feng Gao, also at Linköping. “If we don’t know how to recycle them, maybe we shouldn’t put them on the market at all.”
To this end, many countries around the world are imposing legal requirements on photovoltaic manufacturers, to ensure that they collect and recycle any solar cell waste they produce. These initiatives include the WEEE directive 2012/19/EU in the European Union and equivalent legislation in Asia and the US.
Perovskites are one of the most promising materials for making next-generation solar cells. Not only are they relatively inexpensive, they are also easy to fabricate, lightweight, flexible and transparent. This allows them to be placed on top of a variety of surfaces, unlike their silicon counterparts. And since they boast a power conversion efficiency (PCE) of more than 25%, this makes them comparable to existing photovoltaics on the market.
A shorter lifespan
One of their downsides, however, is that perovskite solar cells have a shorter lifespan than silicon solar cells. This means that recycling is even more critical for these materials. Today, perovskite solar cells are disassembled using dangerous solvents such as dimethylformamide, but Gao and colleagues have now developed a technique in which water can be used as the solvent.
Perovskites are crystalline materials with an ABX3 structure, where A is caesium, methylammonium (MA) or formamidinium (FA); B is lead or tin; and X is chlorine, bromine or iodine. Solar cells made of these materials are composed of different layers: the hole/electron transport layers; the perovskite layer; indium tin oxide substrates; and cover glasses.
In their work, which they detail in Nature, the researchers succeeded in delaminating end-of-life devices layer by layer, using water containing three low-cost additives: sodium acetate, sodium iodide and hypophosphorous acid. Despite being able to dissolve organic iodide salts such as methylammonium iodide and formamidinium iodide, water only marginally dissolves lead iodide (about 0.044 g per 100 ml at 20 °C). The researchers therefore developed a way to increase the amount of lead iodide that dissolves in water by introducing acetate ions into the mix. These ions readily coordinate with lead ions, forming highly soluble lead acetate (about 44.31 g per 100 ml at 20 °C).
Once the degraded perovskites had dissolved in the aqueous solution, the researchers set about recovering pure and high-quality perovskite crystals from the solution. They did this by providing extra iodide ions to coordinate with lead. This resulted in [PbI]+ transitioning to [PbI2]0 and eventually to [PbI3]− and the formation of the perovskite framework.
To remove the indium tin oxide substrates, the researchers sonicated these layers in a solution of water/ethanol (50%/50% volume ratio) for 15 min. Finally, they delaminated the cover glasses by placing the degraded solar cells on a hotplate preheated to 150 °C for 3 min.
They were able to apply their technology to recycle both MAPbI3 and FAPbI3 perovskites.
New devices made from the recycled perovskites had an average power conversion efficiency of 21.9 ± 1.1%, with the best samples clocking in at 23.4%. This represents an efficiency recovery of more than 99% compared with those prepared using fresh materials (which have a PCE of 22.1 ± 0.9%).
Looking forward, Gao and colleagues say they would now like to demonstrate that their technique works on a larger scale. “Our life-cycle assessment and techno-economic analysis has already confirmed that our strategy not only preserves raw materials, but also appreciably lowers overall manufacturing costs of solar cells made from perovskites,” says co-team leader Fengqi You, who works at Cornell University. “In particular, reclaiming the valuable layers in these devices drives down expenses and helps reduce the ‘levelized cost’ of electricity they produce, making the technology potentially more competitive and sustainable at scale,” he tells Physics World.
The post Perovskite solar cells can be completely recycled appeared first on Physics World.