Scientists obtain detailed maps of earthquake-triggering high-pressure subsurface fluids
Researchers in Japan and Taiwan have captured three-dimensional images of an entire geothermal system deep in the Earth’s crust for the first time. By mapping the underground distribution of phenomena such as fracture zones and phase transitions associated with seismic activity, they say their work could lead to improvements in earthquake early warning models. It could also help researchers develop next-generation versions of geothermal power – a technology that study leader Takeshi Tsuji of the University of Tokyo says has enormous potential for clean, large-scale energy production.
“With a clear three-dimensional image of where supercritical fluids are located and how they move, we can identify promising drilling targets and design safer and more efficient development plans,” Tsuji says. “This could have direct implications for expanding geothermal power generation, reducing dependence on fossil fuels, and contributing to carbon neutrality and energy security in Japan and globally.”
In their study, Tsuji and colleagues focused on a region known as the brittle-ductile transition zone, which is where rocks go from being seismically active to mostly inactive. This zone is important for understanding volcanic activity and geothermal processes because it lies near an impermeable sealing band that allows fluids such as water to accumulate in a high-pressure, supercritical state. When these fluids undergo phase transitions, earthquakes may follow. However, such fluids could also produce more geothermal energy than conventional systems. Identifying their location is therefore important for this reason, too.
A high-resolution “digital map”
Many previous electromagnetic and magnetotelluric surveys suffered from low spatial resolution and were limited to regions relatively close to the Earth’s surface. In contrast, the techniques used in the latest study enabled Tsuji and colleagues to create a clear high-resolution “digital map” of deep geothermal reservoirs – something that has never been achieved before.
To make their map, the researchers used three-dimensional multichannel seismic surveys to image geothermal structures in the Kuju volcanic group, which is located on the Japanese island of Kyushu. They then analysed these images using a method they developed known as extended Common Reflection Surface (CRS) stacking. This allowed them to visualize deeper underground features such as magma-related structures, fracture-controlled fluid pathways and rock layers that “seal in” supercritical fluids.
“In addition to this, we applied advanced seismic tomography and machine-learning based analyses to determine the seismic velocity of specific structures and earthquake mechanisms with high accuracy,” explains Tsuji. “It was this integrated approach that allowed us to image a deep geothermal system in unprecedented detail.” He adds that the new technique is also better suited to mountainous geothermal regions where limited road access makes it hard to deploy the seismic sources and receivers used in conventional surveys.
A promising site for future supercritical geothermal energy production
Tsuji and colleagues chose to study the Kuju area because it is home to several volcanoes that were active roughly 1600 years ago and have erupted intermittently in recent years. The region also hosts two major geothermal power plants, Hatchobaru and Otake. The former has a capacity of 110 MW and is the largest geothermal facility in Japan.
The heat source for both plants is thought to be located beneath Mt Kuroiwa and Mt Sensui, and the region is considered a promising site for supercritical geothermal energy production. Its geothermal reservoir appears to consist of water that initially fell as precipitation (so-called meteoric water) and was heated underground before migrating westward through the fault system. Until now, though, no detailed images of the magmatic structures and fluid pathways had been obtained.
Tsuji says he has long wondered why geothermal power is not more widely used in Japan, despite the country’s abundant volcanic and thermal resources. “Our results now provide the scientific and technical foundation for next-generation supercritical geothermal power,” he tells Physics World.
The researchers now plan to try out their technique using portable seismic sources and sensors deployed in mountainous areas (not just along roads) to image the shallower parts of geothermal systems in greater detail as well. “We also plan to extend our surveys to other geothermal fields to test the general applicability of our method,” Tsuji says. “Ultimately, our goal is to provide a reliable scientific basis for the large-scale deployment of supercritical geothermal power as a sustainable energy source.”
The present work is detailed in Communications Earth & Environment.
The post Scientists obtain detailed maps of earthquake-triggering high-pressure subsurface fluids appeared first on Physics World.