↩ Accueil

Vue lecture

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.

Higher-order brain function revealed by new analysis of fMRI data

Par : No Author

An international team of researchers has developed new analytical techniques that consider interactions between three or more regions of the brain – providing a more in-depth understanding of human brain activity than conventional analysis. Led by Andrea Santoro at the Neuro-X Institute in Geneva and Enrico Amico at the UK’s University of Birmingham, the team hopes its results could help neurologists identify a vast array of new patterns in human brain data.

To study the structure and function of the brain, researchers often rely on network models. In these, nodes represent specific groups of neurons in the brain and edges represent the electrical connections between neurons using statistical correlations.

Within these models, brain activity has often been represented as pairwise interactions between two specific regions. Yet as the latest advances in neurology have clearly shown, the real picture is far more complex.

“To better analyse how our brains work, we need to look at how several areas interact at the same time,” Santoro explains. “Just as multiple weather factors – like temperature, humidity, and atmospheric pressure – combine to create complex patterns, looking at how groups of brain regions work together can reveal a richer picture of brain function.”

Higher-order interactions

Yet with the mathematical techniques applied in previous studies, researchers have not confirmed whether network models incorporating these higher-order interactions between three or more brain regions could really be more accurate than simpler models, which only account for pairwise interactions.

To shed new light on this question, Santoro’s team built upon their previous analysis of functional MRI (fMRI) data, which identify brain activity by measuring changes in blood flow.

Their approach combined two powerful tools. One is topological data analysis. This identifies patterns within complex datasets like fMRI, where each data point depends on a large number of interconnected variables. The other is time series analysis, which is used to identify patterns in brain activity which emerge over time. Together, these tools allowed the researchers to identify complex patterns of activity occurring across three or more brain regions simultaneously.

To test their approach, the team applied it to fMRI data taken from 100 healthy participants in the Human Connectome Project. “By applying these tools to brain scan data, we were able to detect when multiple regions of the brain were interacting at the same time, rather than only looking at pairs of brain regions,” Santoro explains. “This approach let us uncover patterns that might otherwise stay hidden, giving us a clearer view of how the brain’s complex network operates as a whole.”

Just as they hoped, this analysis of higher-order interactions provided far deeper insights into the participants’ brain activity compared with traditional pairwise methods. “Specifically, we were better able to figure out what type of task a person was performing, and even uniquely identify them based on the patterns of their brain activity,” Santoro continues.

Distinguishing between tasks

With its combination of topological and time series analysis, the team’s method could distinguish between a wide variety of tasks in the participants: including their expression of emotion, use of language, and social interactions.

By building further on their approach, Santoro and colleagues are hopeful it could eventually be used to uncover a vast space of as-yet unexplored patterns within human brain data.

By tailoring the approach to the brains of individual patients, this could ultimately enable researchers to draw direct links between brain activity and physical actions.

“Down the road, the same approach might help us detect subtle brain changes that occur in conditions like Alzheimer’s disease – possibly before symptoms become obvious – and could guide better therapies and earlier interventions,” Santoro predicts.

The research is described in Nature Communications.

The post Higher-order brain function revealed by new analysis of fMRI data appeared first on Physics World.

Humanitarian engineering can improve cancer treatment in low- and middle-income countries

This episode of the Physics World Weekly podcast explores how the concept of humanitarian engineering can be used to provide high quality cancer care to people in low- and middle-income countries (LMICs). This is an important challenge because today only 5% of global radiotherapy resources are located in LMICs, which are home to the majority of the world’s population.

Our guests are two medical physicists at the University of Washington in the US who have contributed to the ebook Humanitarian Engineering for Global Oncology. They are Eric Ford, who edited the ebook and Afua Yorke, who along with Ford wrote the chapter “Cost-effective radiation treatment delivery systems for low- and middle-income countries”.

They are in conversation with Physics World’s Tami Freeman.

The post Humanitarian engineering can improve cancer treatment in low- and middle-income countries appeared first on Physics World.

Medical physics and biotechnology: highlights of 2024

Par : Tami Freeman

From tumour-killing quantum dots to proton therapy firsts, this year has seen the traditional plethora of exciting advances in physics-based therapeutic and diagnostic imaging techniques, plus all manner of innovative bio-devices and biotechnologies for improving healthcare. Indeed, the Physics World Top 10 Breakthroughs for 2024 included a computational model designed to improve radiotherapy outcomes for patients with lung cancer by modelling the interaction of radiation with lung cells, as well as a method to make the skin of live mice temporarily transparent to enable optical imaging studies. Here are just a few more of the research highlights that caught our eye.

Marvellous MRI machines

This year we reported on some important developments in the field of magnetic resonance imaging (MRI) technology, not least of which was the introduction of a 0.05 T whole-body MRI scanner that can produce diagnostic quality images. The ultralow-field scanner, invented at the University of Hong Kong’s BISP Lab, operates from a standard wall power outlet and does not require shielding cages. The simplified design makes it easier to operate and significantly lower in cost than current clinical MRI systems. As such, the BISP Lab researchers hope that their scanner could help close the global gap in MRI availability.

Moving from ultralow- to ultrahigh-field instrumentation, a team headed up by David Feinberg at UC Berkeley created an ultrahigh-resolution 7 T MRI scanner for imaging the human brain. The system can generate functional brain images with 10 times better spatial resolution than current 7 T scanners, revealing features as small as 0.35 mm, as well as offering higher spatial resolution in diffusion, physiological and structural MR imaging. The researchers plan to use their new NexGen 7 T scanner to study underlying changes in brain circuitry in degenerative diseases, schizophrenia and disorders such as autism.

Meanwhile, researchers at Massachusetts Institute of Technology and Harvard University developed a portable magnetic resonance-based sensor for imaging at the bedside. The low-field single-sided MR sensor is designed for point-of-care evaluation of skeletal muscle tissue, removing the need to transport patients to a centralized MRI facility. The portable sensor, which weighs just 11 kg, uses a permanent magnet array and surface RF coil to provide low operational power and minimal shielding requirements.

Proton therapy progress

Alongside advances in diagnostic imaging, 2024 also saw a couple of firsts in the field of proton therapy. At the start of the year, OncoRay – the National Center for Radiation Research in Oncology in Dresden – launched the world’s first whole-body MRI-guided proton therapy system. The prototype device combines a horizontal proton beamline with a whole-body MRI scanner that rotates around the patient, a geometry that enables treatments both with patients lying down or in an upright position. Ultimately, the system could enable real-time MRI monitoring of patients during cancer treatments and significantly improve the targeting accuracy of proton therapy.

OncoRay’s research prototype
OncoRay’s research prototype The proton therapy beamline (left) and the opened MRI-guided proton therapy system, showing the in-beam MRI (centre) and patient couch (right). (Courtesy: UKD/Kirsten Lassig)

Also aiming to enhance proton therapy outcomes, a team at the PSI Center for Proton Therapy performed the first clinical implementation of an online daily adaptive proton therapy (DAPT) workflow. Online plan adaptation, where the patient remains on the couch throughout the replanning process, could help address uncertainties arising from anatomical changes during treatments. In five adults with tumours in rigid body regions treated using DAPT, the daily adapted plans provided target coverage to within 1.1% of the planned dose and, in over 90% of treatments, improved dose metrics to the targets and/or organs-at-risk. Importantly, the adaptive approach took just a few minutes longer than a non-adaptive treatment, remaining within the 30-min time slot allocated for a proton therapy session.

Bots and dots

Last but certainly not least, this year saw several research teams demonstrate the use of tiny devices for cancer treatment. In a study conducted at the Institute for Bioengineering of Catalonia, for instance, researchers used self-propelling nanoparticles containing radioactive iodine to shrink bladder tumours.

Graphene quantum dots
Cell death by dots Schematic illustration showing the role of graphene quantum dots as nanozymes for tumour catalytic therapy. (Courtesy: FHIPS)

Upon injection into the body, these “nanobots” search for and accumulate inside cancerous tissue, delivering radionuclide therapy directly to the target. Mice receiving a single dose of the nanobots experienced a 90% reduction in the size of bladder tumours compared with untreated animals.

At the Chinese Academy of Sciences’ Hefei Institutes of Physical Science, a team pioneered the use of metal-free graphene quantum dots for chemodynamic therapy. Studies in cancer cells and tumour-bearing mice showed that the quantum dots caused cell death and inhibition of tumour growth, respectively, with no off-target toxicity in the animals.

Finally, scientists at Huazhong University of Science and Technology developed novel magnetic coiling “microfibrebots” and used them to stem arterial bleeding in a rabbit – paving the way for a range of controllable and less invasive treatments for aneurysms and brain tumours.

The post Medical physics and biotechnology: highlights of 2024 appeared first on Physics World.

Elevating brachytherapy QA with RadCalc

Par : No Author

An engaging webinar where we explore how RadCalc supports advanced brachytherapy quality assurance, enabling accurate and efficient dose calculations. Brachytherapy plays a critical role in cancer treatment, with modalities like HDR, LDR, and permanent seed implants requiring precise dose verification to ensure optimal patient outcomes.

The increasing complexity of modern brachytherapy plans has heightened the demand for streamlined QA processes. Traditional methods, while effective, often involve time-consuming experimental workflows. With RadCalc’s 3D dose calculation system based on the TG-43 protocol, users can achieve fast and reliable QA, supported by seamless integration with treatment planning systems and automation through RadCalcAIR.

The webinar will showcase the implementation of independent RadCalc QA.

Don’t miss the opportunity to listen to two RadCalc clinical users!

A Q&A session follows the presentation.

Michal Poltorak, Oskar Sobotka, Lucy Wolfsberger, Carlos Bohorquez (left to right)
Michal Poltorak, Oskar Sobotka, Lucy Wolfsberger, Carlos Bohorquez (left to right)

Michal Poltorak, MSc, is the head of the department of Medical Physics at the National Institute of Medicine, Ministry of the Interior and Administration, in Warsaw, Poland. With expertise in medical physics, he oversees research and clinical applications in radiation therapy and patient safety. His professional focus lies in integrating innovative technologies.

Oskar Sobotka, MSc.Eng, is a medical physicist at the Radiotherapy Center in Gorzów Wielkopolski, specializing in treatment planning and dosimetry. With a Master’s degree from Adam Mickiewicz University and experience in nuclear medicine and radiotherapy, he ensures precision and safety in patient care.

Lucy Wolfsberger, MS, LAP, is an application specialist for RadCalc at LifeLine Software Inc., a part of the LAP Group. She is dedicated to enhancing safety and accuracy in radiotherapy by supporting clinicians with a patient-centric, independent quality assurance platform. Lucy combines her expertise in medical physics and clinical workflows to help healthcare providers achieve efficient, reliable, and comprehensive QA.

Carlos Bohorquez, MS, DABR, is the product manager for RadCalc at LifeLine Software Inc., a part of the LAP Group. An experienced board-certified clinical physicist with a proven history of working in the clinic and medical device industry, Carlos’ passion for clinical quality assurance is demonstrated in the research and development of RadCalc into the future.

The post Elevating brachytherapy QA with RadCalc appeared first on Physics World.

Automated checks build confidence in treatment verification

ChartCheck
Streamlined solution ChartCheck automates a comprehensive suite of clinical checks to monitor the progress of ongoing treatments. (Courtesy: Radformation)

Busy radiation therapy clinics need smart solutions that streamline processes while also enhancing the quality of patient care. That’s the premise behind ChartCheck, a tool developed by Radformation to facilitate the weekly checks that medical physicists perform for each patient who is undergoing a course of radiotherapy. By introducing automation into what is often a manual and repetitive process, ChartCheck can save time and effort while also enabling medical physicists to identify and investigate potential risks as the treatment progresses.

“To ensure that a patient is receiving the proper treatment a qualified medical physicist must check a patient’s chart after every five fractions of radiation has been delivered,” explains Ryan Manger, lead medical physicist at the Encinitas Treatment Center, one of four clinics operated by UC San Diego in the US. “The current best practice is to check 36 separate items for each patient, which can take a lot of time when each physicist needs to verify 30 or 40 charts every week.”

Ryan Manger
Improving workflows Ryan Manger, lead medical physicist at one of the treatment centres operated by UC San Diego, believes that ChartCheck has helped him and his colleagues to save time and focus their attention where it matters most. (Courtesy: R Manger/UC San Diego)

Before introducing ChartCheck into the workflow at UC San Diego, Manger says that around 70% of the checks had to be done manually. “The weekly checks are really important for patient safety, but they become a big time sink when each task takes five or ten minutes,” he says. “It’s easy to get fatigued when you’re looking at the same things over and over again, and we have found that introducing automation into the process can have a positive impact on everything else we do in the clinic.”

ChartCheck monitors the progress of ongoing treatments by automatically performing a comprehensive suite of clinical checks, raising an alert if any issue is detected. As an example, after each treatment the tool verifies that the delivered dose matches the parameters defined in the clinical plan, while it also monitors real-time changes such as any movement of the couch during treatment. It also collates together all the necessary safety documentation, allows comments or notes to be added, and highlights any scheduling changes when a patient decides to take a treatment break, for instance, or the physician adds a boost to the clinical plan.

As well as consolidating all the information on a single platform, ChartCheck allows physicists to analyse the treatment data to identify and understand any underlying issues that might affect patient safety. “It has given us a lot more vision of what’s happening across all our treatments, which is typically around 300 per week,” says Manger. “Within just three months it has illuminated areas that we were unaware of before, but that might have carried some risk.”

What’s more, the physicists at UC San Diego have found that automating many of the routine tasks has enabled them to focus their attention where it is needed most. “We have implemented the tool as a first-pass filter to flag any charts that might need further attention, which is typically around 10–15% of the total,” says Manger. “We can then use our expertise to investigate those charts in more detail and to understand what the risk factors might be. The result is that we do a better check where it’s needed, rather than just looking at the same things over and over.”

Jennifer Scharff
Building confidence Jennifer Scharff, lead physicist at the John Stoddard Cancer Center in Des Moines, Iowa, says that ChartCheck has helped her to ensure that all the necessary safety checks are being done in consistent way. (Courtesy: J Scharff/UnityPoint Health)

Jennifer Scharff, lead physicist at the John Stoddard Cancer Center in Des Moines, Iowa, also values the extra insights that ChartCheck offers. One major advantage, she says, is how easy it is to check whether the couch might have moved between treatment fields. “It’s not ideal when the couch moves, but sometimes it happens if a patient coughs or sneezes during the treatment and the therapist needs to adjust the position slightly when they get back into their breath hold,” she says. “In ChartCheck it’s really easy to see those positional shifts on a daily basis, and to identify any trends or issues that we might need to address.”

ChartCheck offers full integration with ARIA, the oncology information system from Varian, making it easy to implement and operate within existing clinical workflows. Although ARIA already offers a tool for treatment verification, Scharff says that ChartCheck offers a more comprehensive and efficient solution. “It checks more than ARIA does, and it’s much faster and more efficient to do a weekly physics check,” she says. “As an example, it’s really easy to see the journal notes that our therapists make when something isn’t quite right, and it helps us to identify patients who need a final chart check when they want to pause or stop their treatment.”

The automated tool also guarantees consistency between the chart checks undertaken by different physicists, with Scharff finding the standardized approach particularly useful when locums are brought into the team. “It’s easy for them to see all the information we can see, we can be sure that they are making the same checks as we do, and the same documents are always sent for approval,” she says. “The system makes it really easy to catch things, and it calls out the same thing for everyone.”

With the medical physicists at UC San Diego working across four different treatment centres, Manger has also been impressed by the ability of ChartCheck to improve consistency between physicists working in different locations. “The human factor always introduces some variations, even between physicists who are fully trained,” he says. “Minimizing the impact of those variations has been a huge benefit that I hadn’t considered when we first decided to introduce the software, but it has allowed us to ensure that all the correct policies and procedures are being followed across all of our treatment centres.”

Overall, the experience of physicists like Manger and Scharff is that ChartCheck can streamline processes while also providing them with the reassurance that their patients are always being treated correctly and safely. “It has had a huge positive impact for us,” says Scharff. “It saves a lot of time and gives us more confidence that everything is being done as it should be.”

The post Automated checks build confidence in treatment verification appeared first on Physics World.

Patient-specific quality assurance (PSQA) based on independent 3D dose calculation

Par : No Author

 

In this webinar, we will discuss that patient specific quality assurance (PSQA) is an essential component of the radiation treatment process. This control allows us to ensure that the planned dose will be delivered to the patient. The increasing number of patients with indications for modulated treatments requiring PSQA has significantly increased the workload of the medical physics departments, and the need to find more efficient ways to perform it has arisen.

In recent years, there has been an increasing evolution of measurement systems. However, the experimental process involved imposes a limit on the time savings. The 3D dose calculation systems are presented as a solution to this problem, allowing the reduction of the time needed for the initiation of treatments.

The use of 3D dose calculation systems, as stated in international recommendations (TG219), requires a process of commissioning and adjustment of dose calculation parameters.

This presentation will show the implementation of PSQA based on independent 3D dose calculation for VMAT treatments in breast cancer using DICOM information from the plan and LOG files. Comparative results with measurement-based PSQA systems will also be presented.

An interactive Q&A session follows the presentation.

Daniel Venencia

Dr Daniel Venencia is the chief of the medical physics department at Instituto Zunino – Fundación Marie Curie in Cordoba, Argentina. He holds a BSc in physics and a PhD from the Universidad Nacional de Córdoba (UNC), Daniel has completed postgraduate studies in radiotherapy and nuclear medicine. With extensive experience in the field, Daniel has directed more than 20 MSc and BSc theses and three doctoral theses. He has delivered more than 400 presentations at national and international congresses. He has published in prestigious journals, including the Journal of Applied Clinical Medical Physics and the International Journal of Radiation Oncology, Biology and Physics. His work continues to make significant contributions to the advancement of medical physics.

Carlos Bohorquez

Carlos Bohorquez, MS, DABR, is the product manager for RadCalc at LifeLine Software Inc., a part of the LAP Group. An experienced board-certified clinical physicist with a proven history of working in the clinic and medical device industry, Carlos’ passion for clinical quality assurance is demonstrated in the research and development of RadCalc into the future.

 

The post Patient-specific quality assurance (PSQA) based on independent 3D dose calculation appeared first on Physics World.

The heart of the matter: how advances in medical physics impact cardiology

Par : Tami Freeman

Medical physics techniques play a key role in all areas of cardiac medicine – from the use of advanced imaging methods and computational modelling to visualize and understand heart disease, to the development and introduction of novel pacing technologies.  At a recent meeting organised by the Institute of Physics’ Medical Physics Group, experts in the field discussed some of the latest developments in cardiac imaging and therapeutics, with a focus on transitioning technologies from the benchtop to the clinic.

Monitoring metabolism

The first speaker, Damian Tyler from the University of Oxford described how hyperpolarized MRI can provide “a new window on the reactions of life”. He discussed how MRI – most commonly employed to look at the heart’s structure and function – can also be used to characterize cardiac metabolism, with metabolic MR studies helping us understand cardiovascular disease, assess drug mechanisms and guide therapeutic interventions.

In particular, Tyler is studying pyruvate, a compound that plays a central role in the body’s metabolism of glucose. He explained that 13C MR spectroscopy is ideal for studying pyruvate metabolism, but its inherent low signal-to-noise ratio makes it unsuitable for rapid in vivo imaging. To overcome this limitation, Tyler uses hyperpolarized MR, which increases the sensitivity to 13C-enriched tracers by more than 10,000 times and enables real-time visualization of normal and abnormal metabolism.

As an example, Tyler described a study using hyperpolarized 13C MR spectroscopy to examine cardiac metabolism in diabetes, which is associated with an increased risk of heart disease. Tyler and his team examined the downstream metabolites of 13C-pyruvate (such as 13C-bicarbonate and 13C-lactate) in subjects with and without type 2 diabetes. They found reduced bicarbonate levels in diabetes and increased lactate, noting that the bicarbonate to lactate ratio could provide a diagnostic marker.

Among other potential clinical applications, hyperpolarized MR could be used to detect inflammation following a heart attack, elucidate the mechanism of drugs and accelerate new drug discovery, and provide an indication of whether a patient is likely to develop cardiotoxicity from chemotherapy. It can also be employed to guide therapeutic interventions by imaging ischaemia in tissue and assess cardiac perfusion after heart attack.

“Hyperpolarized MRI offers a safe and non-invasive way to assess cardiac metabolism,” Tyler concluded. “There are a raft of potential clinical applications for this emerging technology.”

Changing the pace

Alongside the introduction of new and improved diagnostic approaches, researchers are also developing and refining treatments for cardiac disorders. One goal is to create an effective treatment for heart failure, an incurable progressive condition in which the heart can’t pump enough blood to meet the body’s needs. Current therapies can manage symptoms, but cannot treat the underlying disease or prevent progression. Ashok Chauhan from Ceryx Medical told delegates how the company’s bio-inspired pacemaker aims to address this shortfall.

In healthy hearts, Chauhan explained, the heart rate changes in response to breathing, in a mechanism called respiratory sinus arrythmia (RSA). This natural synchronization is frequently lost in patients with heart failure. Ceryx has developed a pacing technology that aims to treat heart failure by resynchronizing the heart and lungs and restoring RSA.

Ashok Chauhan from Ceryx Medical
Heart–lung synchronization Ashok Chauhan explained how Ceryx Medical’s bio-inspired pacemaker aims to improve cardiac function in patients with heart failure.

The device works by monitoring the cardiorespiratory system in real time and using RSA inputs to generate stimulation signals in real time. Early trials in large animals demonstrated that RSA pacing increased cardiac output and ejection fraction compared with monotonic (constant) pacing. Last month, Ceryx begun the first in-human trials of its pacing technology, using an external pacemaker to assess the safety of the device.

Eliminating sex bias

Later in the day, Hannah Smith from the University of Oxford presented a fascinating talk entitled “Women’s hearts are superior and it’s killing them”.

Smith told a disturbing tale of an elderly man with chest pain, who calls an ambulance and undergoes electrocardiography (ECG) that shows he is having a heart attack. He is rushed to hospital to unblock his artery and restore cardiac function. His elderly wife also feels unwell, but her ECG only shows slight abnormality. She is sent for blood tests that eventually reveal she was also having a severe heart attack – but the delay in diagnosis led to permanent cardiac damage.

The fact is that women having heart attacks are more likely to be misdiagnosed and receive less aggressive treatment than men, Smith explained. This is due to variations in the size of the heart and differences in the distances and angles between the heart and the torso surface, which affect the ECG readings used to diagnose heart attack.

To understand the problem in more depth, Smith developed a computational tool that automatically reconstructs torso ventricular anatomy from standard clinical MR images. Her goal was to identify anatomical differences between males and females, and examine their impact on ECG measurements.

Using clinical data from the UK Biobank (around 1000 healthy men and women, and 84 women and 341 men post-heart attack), Smith modelled anatomies and correlated these with the respective ECG data. She found that the QRS complex (the signal for the heart to start contracting) was about 6 ms longer in healthy males than healthy females, attributed to the smaller heart volume in females. This is significant as it implies that the mean QRS duration would have to increase by a larger percentage for women than men to be diagnosed as elevated.

She also studied the ST segment in the ECG trace, elevation of which is a key feature used to diagnose heart attack. The ST amplitude was lower in healthy females than healthy males, due to their smaller ventricles and more superior position of the heart. The calculations revealed that overweight women would need a 63% larger increase in ST amplitude to be classified as elevated than normal weight men.

Smith concluded that heart attacks are harder to see on a woman’s ECGs than on a man’s, with differences in ventricular size, position and orientation impacting the ECG before, during and after heart attacks. Importantly, if these relationships can be elucidated and corrected for in diagnostic tools, these sex biases can be reduced, paving the way towards personalised ECG interpretation.

Prize presentations

The meeting also included a presentation from the winner of the 2023 Medical Physics Group PhD prize: Joshua Astley from the University of Sheffield, for his thesis “The role of deep learning in structural and functional lung imaging”.

Joshua Astley from the University of Sheffield
Prize presentation Joshua Astley from the University of Sheffield is the winner of the 2023 Medical Physics Group PhD prize.

Shifting the focus from the heart to the lungs, Astley discussed how hyperpolarized gas MRI, using inhaled contrast agents such as 1He and 129Xe, can visualize regional lung ventilation. To improve the accuracy and speed of such lung MRI studies, he designed a deep learning system that rapidly performs MRI segmentation and automates the calculation of ventilation defect percentage via lung cavity estimates. He noted that the tool is already being used to improve workflow in clinical hyperpolarized gas MRI scans.

Astley also described the use of CT ventilation imaging as a potentially lower-cost approach to visualize lung ventilation. Combining the benefits of computational modelling with deep learning, Astley and colleagues have developed a hybrid framework that generates synthetic ventilation scans from non-contrast CT images.

Quoting some “lessons learnt from my thesis”, Astley concluded that artificial intelligence (AI)-based workflows enable faster computation of clinical biomarkers and better integration of functional lung MRI, and that non-contrast functional lung surrogates can reduce the cost and expand use of functional lung imaging. He also emphasized that quantifying the uncertainty in AI approaches can improve clinician’s trust in using such algorithms, and that making code open and available is key to increasing its impact.

The day rounded off with awards for the meeting’s best talk in the submitted abstracts section and the best poster presentation. The former was won by Sam Barnes from Lancaster University for his presentation on the use of electroencephalography (EEG) for diagnosis of autism spectrum disorder. The poster prize was awarded to Suchit Kumar from University College London, for his work on a graphene-based electrophysiology probe for concurrent EEG and functional MRI.

The post The heart of the matter: how advances in medical physics impact cardiology appeared first on Physics World.

Physicists in cancer radiotherapy

Par : No Author

The programme focuses on the cancer radiation therapy patient pathway, with the aim of equipping students with the skills to progress onto careers in clinical, academic research or commercial medical physics opportunities.

Alan McWilliam, programme director of the new course, is also a reader in translational radiotherapy physics. He explains: “Radiotherapy is a mainstay of cancer treatment, used in around 50% of all treatments, and can be used together with surgery or systemic treatments like chemotherapy or immunotherapy. With a heritage dating back over 100 years, radiotherapy is now highly technical, allowing the radiation to be delivered with pin-point accuracy and is increasingly interdisciplinary to ensure a high-quality, curative delivery of radiation to every patient.”

“This new course builds on the research expertise at Manchester and benefits from being part of one of the largest university cancer departments in Europe, covering all aspects of cancer research. We believe this master’s reflects the modern field of medical physics, spanning the multidisciplinary nature of the field.”

Cancer pioneers

Manchester has a long history of developing solutions to drive improvements in healthcare, patients’ lives and the wellbeing of individuals. This new course draws on scientific research and innovation to equip those interested in a career in medical physics or cancer research with specialist skills that draw on a breadth of knowledge.  Indeed, the course units bring together expertise from academics that have pioneered, amongst other work, the use of image-guided radiotherapy, big data analysis using real-world radiotherapy data, novel MR imaging for tracking oxygenation of tumours during radiotherapy, and proton research beam lines. Students will benefit directly from this network of research groups by being able to join research seminars throughout the course.

Working with clinical scientists

The master’s course is taught together with clinical physicists from The Christie NHS Foundation Trust, one of the largest single-site cancer hospitals in Europe and the only UK cancer hospital connected directly to a research institute. The radiotherapy department currently has 16 linear accelerators across four sites, an MR-guided radiotherapy service and one of the two NHS high-energy proton beam services. The Christie is currently one of only two cancer centres in the world with access to both proton beam and an MR-guided linear accelerator. For students, this partnership provides the opportunity to work with people at the forefront of cancer treatment developments.

To reflect the current state of radiotherapy, the University of Manchester has worked with The Christie to ensure students gain the skills necessary for a successful, modern, medical physics career. Units have a strong clinical focus, with access to technology that allows students to experience and learn from clinical workflows.

Students will learn the fundamentals of how radiotherapy works, from interactions of X-rays and matter, through X-ray beam generation control and measurement, and to how treatments are planned. Complementary to X-ray therapy, students will learn about the concepts of proton beam therapy, how the delivery of protons is different from X-rays, and the potential clinical benefits and unique difficulties of protons due to greater uncertainties from how protons interact with matter.

Delivering radiation with pin-point accuracy

The course will provide an in-depth understanding of how imaging can be used throughout the patient pathway to aid treatment decisions and guide the delivery of radiation.

The utility of CT, MRI and PET scanners across clinical pathways is explored, and the area of radiation delivery is complemented by material on radiobiology – how cells and tissues respond to radiation.

The difference between the response of tumours and normal tissue to radiation is called the therapeutic ratio. The radiobiology teaching will focus on how to maximize this ratio, essentially how to improve cure whilst minimising the risk of side-effects due to irradiation of nearby normal tissues. Students will also explore how this ratio could be enhanced or modified to improve the efficacy of all forms of radiotherapy.

Research and technology

A core strength of the research groups in Manchester is the use of routinely collected data in the evaluation of improvements in treatment delivery or the clinical translation of research findings. Many such improvements do not qualify for a full randomized clinical trial. However, there are many pragmatic methods to evaluate clinical benefit. Through studying clinical workflows and translation, these concepts will be explored along with investigating how to maximise results from all available data.

Modern medical physicists need an appreciation of artificial intelligence (AI). AI is emerging as an automation tool throughout the radiation therapy workflow; for example, segmentation of tissues, radiotherapy planning and quality assurance. This course delves into the fundamentals of AI and machine learning, giving students the opportunity to implement their own solution for image classification or image segmentation. For those with leadership aspirations, guest lecturers from various academic, clinical or commercial backgrounds will detail career routes and how to develop knowledge in this area.

Pioneering new learning and assessments

Programme director Alan McWilliam talks us through the design of the course and how students are evaluated:

“An aspect of the teaching we are particularly proud of is the design of the assessments throughout the units. Gone are written exams, with assessments allowing students to apply their new knowledge to real medical physics problems. Students will perform dosimetric calculations and Monte Carlo simulations of proton depositions, as well as build an image registration pipeline and pitch for funding in a dragon’s den (or shark tank) scenario. This form of assessment will allow students to demonstrate skills directly useful for future career pathways.”

“The final part of the course is the research project, to take place after the taught elements are complete. Students will choose from projects which will embed them with one of the academic or clinical groups. Examples for the current cohort include training an AI segmentation model for muscle in CT images and associating this with treatment outcomes; simulating prompt gamma rays from proton deliveries for dose verification; and assisting with commissioning MR-guided workflows for ultra-central lung treatments.”

Develop your specialist skills

The Medical Physics in Cancer Radiation Therapy MSc is a one-year full-time (two-year part-time) programme at the University of Manchester.

Applications are now open for the next academic year, and it is recommended to apply early, as applications may close if the course is full.

Find out more and apply: https://uom.link/medphyscancer 

The post Physicists in cancer radiotherapy appeared first on Physics World.

❌