↩ Accueil

Vue lecture

Scientists in China celebrate the completion of the underground JUNO neutrino observatory

The $330m Jiangmen Underground Neutrino Observatory (JUNO) has released its first results following the completion of the huge underground facility in August.

JUNO is located in Kaiping City, Guangdong Province, in the south of the country around 150 km west of Hong Kong.

Construction of the facility began in 2015 and was set to be complete some five years later. Yet the project suffered from serious flooding, which delayed construction.

JUNO, which is expected to run for more than 30 years, aims to study the relationship between the three types of neutrino: electron, muon and tau. Although JUNO will be able to detect neutrinos produced by supernovae as well as those from Earth, the observatory will mainly measure the energy spectrum of electron antineutrinos released by the Yangjiang and Taishan nuclear power plants, which both lie 52.5 km away.

To do this, the facility has a 80 m high and 50 m diameter experimental hall located 700 m underground. Its main feature is a 35 m radius spherical neutrino detector, containing 20,000 tonnes of liquid scintillator. When an electron antineutrino occasionally bumps into a proton in the liquid, it triggers a reaction that results in two flashes of light that are detected by the 43,000 photomultiplier tubes that observe the scintillator.

On 18 November, a paper was submitted to the arXiv preprint server concluding that the detector’s key performance indicators fully meet or surpass design expectations.

New measurement 

Neutrinos oscillate from one flavour to another as they travel near the speed of light, rarely interacting with matter. This oscillation is a result of each flavour being a combination of three neutrino mass states.

Yet scientists do not know the absolute masses of the three neutrinos but can measure neutrino oscillation parameters, known as θ12, θ23 and θ13, as well as the square of the mass differences (Δm2) between two different types of neutrinos.

A second JUNO paper submitted on 18 November used data collected between 26 August and 2 November to measure the solar neutrino oscillation parameter θ12 and Δm221 with a factor of 1.6 better precision than previous experiments.

Those earlier results, which used solar neutrinos instead of reactor antineutrinos, showed a 1.5 “sigma” discrepancy with the Standard Model of particle physics. The new JUNO measurements confirmed this difference, dubbed the solar neutrino tension, but further data will be needed to prove or disprove the finding.

“Achieving such precision within only two months of operation shows that JUNO is performing exactly as designed,” says Yifang Wang from the Institute of High Energy Physics of the Chinese Academy of Sciences, who is JUNO project manager and spokesperson. “With this level of accuracy, JUNO will soon determine the neutrino mass ordering, test the three-flavour oscillation framework, and search for new physics beyond it.”

JUNO, which is an international collaboration of more than 700 scientists from 75 institutions across 17 countries including China, France, Germany, Italy, Russia, Thailand, and the US, is the second neutrino experiment in China, after the Daya Bay Reactor Neutrino Experiment. It successfully measured a key neutrino oscillation parameter called θ13 in 2012 before being closed down in 2020.

JUNO is also one of three next-generation neutrino experiments, the other two being the Hyper-Kamiokande in Japan and the Deep Underground Neutrino Experiment in the US. Both are expected to become operational later this decade.

The post Scientists in China celebrate the completion of the underground JUNO neutrino observatory appeared first on Physics World.

  •  

Accelerator experiment sheds light on missing blazar radiation

New experiments at CERN by an international team have ruled out a potential source of intergalactic magnetic fields. The existence of such fields is invoked to explain why we do not observe secondary gamma rays originating from blazars.

Led by Charles Arrowsmith at the UK’s University of Oxford, the team suggests the absence of gamma rays could be the result of an unexplained phenomenon that took place in the early universe.

A blazar is an extraordinarily bright object with a supermassive black hole at its core. Some of the matter falling into the black hole is accelerated outwards in a pair of opposing jets, creating intense beams of radiation. If a blazar jet points towards Earth, we observe a bright source of light including high-energy teraelectronvolt gamma rays.

During their journey across intergalactic space, these gamma-ray photons will occasionally collide with the background starlight that permeates the universe. These collisions can create cascades of electrons and positrons that can then scatter off photons to create gamma rays in the gigaelectronvolt energy range. These gamma-rays should travel in the direction of the original jet, but this secondary radiation has never been detected.

Deflecting field

Magnetic fields could be the reason for this dearth, as Arrowsmith explains: “The electrons and positrons in the pair cascade would be deflected by an intergalactic magnetic field, so if this is strong enough, we could expect these pairs to be steered away from the line of sight to the blazar, along with the reprocessed gigaelectronvolt gamma rays.” It is not clear, however, that such fields exist – and if they do, what could have created them.

Another explanation for the missing gamma rays involves the extremely sparse plasma that permeates intergalactic space. The beam of electron–positron pairs could interact with this plasma, generating magnetic fields that separate the pairs. Over millions of years of travel, this process could lead to beam–plasma instabilities that reduce the beam’s ability to create gigaelectronvolt gamma rays that are focused on Earth.

Oxford’s Gianluca Gregori  explains, “We created an experimental platform at the HiRadMat facility at CERN to create electron–positron pairs and transport them through a metre-long ambient argon plasma, mimicking the interaction of pair cascades from blazars with the intergalactic medium”. Once the pairs had passed through the plasma, the team measured the degree to which they had been separated.

Tightly focused

Called Fireball, the experiment found that the beams remained far more tightly focused than expected. “When these laboratory results are scaled up to the astrophysical system, they confirm that beam–plasma instabilities are not strong enough to explain the absence of the gigaelectronvolt gamma rays from blazars,” Arrowsmith explains. Unless the pair beam is perfectly collimated, or composed of pairs with exactly equal energies, instabilities were actively suppressed in the plasma.

While the experiment suggests that an intergalactic magnetic field remains the best explanation for the lack of gamma rays, the mystery is far from solved. Gregori explains, “The early universe is believed to be extremely uniform – but magnetic fields require electric currents, which in turn need gradients and inhomogeneities in the primordial plasma.” As a result, confirming the existence of such a field could point to new physics beyond the Standard Model, which may have dominated in the early universe.

More information could come with opening of the Cherenkov Telescope Array Observatory. This will comprise ground-based gamma-ray detectors planned across facilities in Spain and Chile, which will vastly improve on the resolutions of current-generation detectors.

The research is described in PNAS.

The post Accelerator experiment sheds light on missing blazar radiation appeared first on Physics World.

  •  

Sympathetic cooling gives antihydrogen experiment a boost

Physicists working on the Antihydrogen Laser Physics Apparatus (ALPHA) experiment at CERN have trapped and accumulated 15,000 antihydrogen atoms in less than 7 h. This accumulation rate is more than 20 times the previous record. Large ensembles of antihydrogen could be used to search for tiny, unexpected differences between matter and antimatter – which if discovered could point to physics beyond the Standard Model.

According to the Standard Model every particle has an antimatter counterpart – or antiparticle. It also says that roughly equal amounts of matter and antimatter were created in the Big Bang. But, today there is much more matter than antimatter in the visible universe, and the reason for this “baryon asymmetry” is one of the most important mysteries of physics.

The Standard Model predicts the properties of antiparticles. An antiproton, for example, has the same mass as a proton and the opposite charge. The Standard Model also predicts how antiparticles interact with matter and antimatter. If physicists could find discrepancies between the measured and predicted properties of antimatter, it could help explain the baryon asymmetry and point to other new physics beyond the Standard Model.

Powerful probe

Just as a hydrogen atom comprises a proton bound to an electron, an antihydrogen antiatom comprises an antiproton bound to an antielectron (positron). Antihydrogen offers physicists several powerful ways to probe antimatter at a fundamental level. Trapped antiatoms can be released in freefall to determine if they respond to gravity in the same way as atoms. Spectroscopy can be used to make precise measurements of how the electromagnetic force binds the antiproton and positron in antihydrogen with the aim of finding differences compared to hydrogen.

So far, antihydrogen’s gravitational and electromagnetic properties appear to be identical to hydrogen. However, these experiments were done using small numbers of antiatoms, and having access to much larger ensembles would improve the precision of such measurements and could reveal tiny discrepancies. However, creating and storing antihydrogen is very difficult.

Today, antihydrogen can only be made in significant quantities at CERN in Switzerland. There, a beam of protons is fired at a solid target, creating antiprotons that are then cooled and stored using electromagnetic fields. Meanwhile, positrons are gathered from the decay of radioactive nuclei and cooled and stored using electromagnetic fields. These antiprotons and positrons are then combined in a special electromagnetic trap to create antihydrogen.

This process works best when the antiprotons and positrons have very low kinetic energies (temperatures) when combined. If the energy is too high, many antiatoms will be escape the trap. So, it is crucial that the positrons and antiprotons to be as cold as possible.

Sympathetic cooling

Recently, ALPHA physicists have used a technique called sympathetic cooling on positrons, and in a new paper they describe their success.  Sympathetic cooling has been used for several decades to cool atoms and ions. It originally involved mixing a hard-to-cool atomic species with atoms that are relatively easy to cool using lasers. Energy is transferred between the two species via the electromagnetic interaction, which chills the hard-to-cool atoms.

The ALPHA team used beryllium ions to sympathetically cool positrons to 10 K, which is five degrees colder than previously achieved using other techniques. These cold positrons boosted the efficiency of the creation and trapping of antihydrogen, allowing the team to accumulate 15,000 antihydrogen atoms in less than 7 h. This is more than a 20-fold improvement over their previous record of accumulating 2000 antiatoms in 24 h.

Science fiction

“These numbers would have been considered science fiction 10 years ago,” says ALPHA spokesperson Jeffrey Hangst, who is a Denmark’s Aarhus University.

Team member Maria Gonçalves, a PhD student at the UK’s Swansea University, says, “This result was the culmination of many years of hard work. The first successful attempt instantly improved the previous method by a factor of two, giving us 36 antihydrogen atoms”.

The effort was led by Niels Madsen of the UK’s Swansea University. He enthuses, “It’s more than a decade since I first realized that this was the way forward, so it’s incredibly gratifying to see the spectacular outcome that will lead to many new exciting measurements on antihydrogen”.

The cooling technique is described in Nature Communications.

The post Sympathetic cooling gives antihydrogen experiment a boost appeared first on Physics World.

  •  

Is Donald Trump conducting a ‘blitzkrieg’ on science?

“Drain the swamp!”

In the intense first few months of his second US presidency, Donald Trump has been enacting his old campaign promise with a vengeance. He’s ridding all the muck from the American federal bureaucracy, he claims, and finally bringing it back under control.

Scientific projects and institutions are particular targets of his, with one recent casualty being the High Energy Physics Advisory Panel (HEPAP). Outsiders might shrug their shoulders at a panel of scientists being axed. Panels come and go. Also, any development in Washington these days is accompanied by confusion, uncertainty, and the possibility of reversal.

But HEPAP’s dissolution is different. Set up in 1967, it’s been a valuable and long-standing advisory committee of the Office of Science at the US Department of Energy (DOE). HEPAP has a distinguished track record of developing, supporting and reviewing high-energy physics programmes, setting priorities and balancing different areas. Many scientists are horrified by its axing.

The terminator

Since taking office in January 2025, Trump has issued a flurry of executive orders – presidential decrees that do not need Congressional approval, legislative review or public debate. One order, which he signed in February, was entitled “Commencing the Reduction of the Federal Bureaucracy”.

It sought to reduce parts of the government “that the President has determined are unnecessary”, seeking to eliminate “waste and abuse, reduce inflation, and promote American freedom and innovation”. While supporters see those as laudable goals, opponents believe the order is driving a stake into the heart of US science.

Hugely valuable, long-standing scientific advisory committees have been axed at key federal agencies, including NASA, the National Science Foundation, the Environmental Protection Agency, the National Oceanic and Atmospheric Administration, the US Geological Service, the National Institute of Health, the Food and Drug Administration, and the Centers for Disease Control and Prevention.

What’s more, the committees were terminated without warning or debate, eliminating load-bearing pillars of the US science infrastructure. It was, as the Columbia University sociologist Gil Eyal put it in a recent talk, the “Trump 2.0 Blitzkrieg”.

Then, on 30 September, Trump’s enablers took aim at advisory committees at the DOE Office of Science. According to the DOE’s website, a new Office of Science Advisory Committee (SCAC) will take over functions of the six former discretionary (non-legislatively mandated) Office of Science advisory committees.

“Any current charged responsibilities of these former committees will be transferred to the SCAC,” the website states matter-of-factly. The committee will provide “independent, consensus advice regarding complex scientific and technical issues” to the entire Office of Science. Its members will be appointed by under secretary for science Dario Gil – a political appointee.

Apart from HEPAP, others axed without warning were the Nuclear Science Advisory Committee, the Basic Energy Sciences Advisory Committee, the Fusion Energy Sciences Advisory Committee, the Advanced Scientific Computing Advisory Committee, and the Biological and Environmental Research Advisory Committee.

Over the years, each committee served a different community and was represented by prominent research scientists who were closely in touch with other researchers. Each committee could therefore assemble the awareness of – and technical knowledge about – emerging promising initiatives and identify the less promising ones.

Many committee members only learned of the changes when they received letters or e-mails out of the blue informing them that their committee had been dissolved, that a new committee had replaced them, and that they were not on it. No explanation was given.

Closing HEPAP and the other Office of Science committees will hamper both the technical support and community input that it has relied on to promote the efficient, effective and robust growth of physics

Physicists whom I have spoken to are appalled for two main reasons. One is that closing HEPAP and the other Office of Science committees will hamper both the technical support and community input that it has relied on to promote the efficient, effective and robust growth of physics.

“Speaking just for high-energy physics, HEPAP gave feedback on the DOE and NSF funding strategies and priorities for the high-energy physics experiments,” says Kay Kinoshita from the University of Cincinnati, a former HEPAP member. “The panel system provided a conduit for information between the agencies and the community, so the community felt heard and the agencies were (mostly) aligned with the community consensus”.

As Kinoshita continued: “There are complex questions that each panel has to deal with. even within the topical area. It’s hard to see how a broader panel is going to make better strategic decisions, ‘better’ meaning in terms of scientific advancement. In terms of community buy-in I expect it will be worse.”

Other physicists cite a second reason for alarm. The elimination of the advisory committees spreads the expertise so thinly as to increase the likelihood of political pressure on decisions. “If you have one committee you are not going to get the right kind of fine detail,” says Michael Lubell, a physicist and science-policy expert at the City College of New York, who has sat in on meetings of most of the Office of Science advisory committees.

“You’ll get opinions from people outside that area and you won’t be able to get information that you need as a policy maker to decide how the resources are to be allocated,” he adds. “A condensed-matter physicist for example, would probably have insufficient knowledge to advise DOE on particle physics. Instead, new committee members would be expected to vet programs based on ideological conformity to what the Administration wants.”

The critical point

At the end of the Second World War, the US began to construct an ambitious long-range plan to promote science that began with the establishment of the National Science Foundation in 1950 and developed and extended ever since. The plan aimed to incorporate both the ability of elected politicians to direct science towards social needs and the independence of scientists to explore what is possible.

US presidents have, of course, had pet scientific projects: the War on Cancer (Nixon), the Moon Shot (Kennedy), promoting renewable energy (Carter), to mention a few. But it is one thing for a president to set science to producing a socially desirable product and another to manipulate the scientific process itself.

“This is another sad day for American science,” says Lubell. “If I were a young person just embarking on a career, I would get the hell out of the country. I would not want to waste the most creative years of my life waiting for things to turn around, if they ever do. What a way to destroy a legacy!”

The end of HEPAP is not draining a swamp but creating one.

The post Is Donald Trump conducting a ‘blitzkrieg’ on science? appeared first on Physics World.

  •  

Rapidly spinning black holes put new limit on ultralight bosons

The LIGO–Virgo–KAGRA collaboration has detected strong evidence for second-generation black holes, which were formed from earlier mergers of smaller black holes. The two gravitational wave signals provide one of the strongest confirmations to date for how Einstein’s general theory of relativity describes rotating black holes. Studying such objects also provides a testbed for probing new physics beyond the Standard Model.

Over the past decade, the global network of interferometers operated by LIGO, Virgo, and KAGRA have detected close to 300 gravitational waves (GWs) – mostly from the mergers of binary black holes.

In October 2024 the network detected a clear signal that pointed back to a merger that occurred 700 million light-years away. The progenitor black holes were 20 and 6 solar masses and the larger object was spinning at 370 Hz, which makes it one of the fastest-spinning black holes ever observed.

Just one month later, the collaboration detected the coalescence of another highly imbalanced binary (17 and 8 solar masses), 2.4 billion light-years away. This signal was even more unusual – showing for the first time that the larger companion was spinning in the opposite direction of the binary orbit.

Massive and spinning

While conventional wisdom says black holes should not be spinning at such high rates, the observations were not entirely unexpected. “With both events having one black hole, which is both significantly more massive than the other and rapidly spinning, [the observations] provide tantalizing evidence that these black holes were formed from previous black hole mergers,” explains Stephen Fairhurst at Cardiff University, spokesperson of the LIGO Collaboration. If this were the case, the two GW signals – called GW241011 and GW241110 – are first observations of second-generation black holes. This is because when a binary merges, the resulting second-generation object tends to have a large spin.

The GW241011 signal was particularly clear, which allowed the team to make the third-ever observation of higher harmonic modes. These are overtones in the GW signal that become far clearer when the masses of the coalescing bodies are highly imbalanced.

The precision of the GW241011 measurement provides one of the most stringent verifications so far of general relativity. The observations also support Roy Kerr’s prediction that rapid rotation distorts the shape of a black hole.

Kerr and Einstein confirmed

“We now know that black holes are shaped like Einstein and Kerr predicted, and general relativity can add two more checkmarks in its list of many successes,” says team member Carl-Johan Haster at the University of Nevada, Las Vegas. “This discovery also means that we’re more sensitive than ever to any new physics that might lie beyond Einstein’s theory.”

This new physics could include hypothetical particles called ultralight bosons. These could form in clouds just outside the event horizons of spinning black holes, and would gradually drain a black hole’s rotational energy via a quantum effect called superradiance.

The idea is that the observed second-generation black holes had been spinning for billions of years before their mergers occurred. This means that if ultralight bosons were present, they cannot have removed lots of angular momentum from the black holes. This places the tightest constraint to date on the mass of ultralight bosons.

“Planned upgrades to the LIGO, Virgo and KAGRA detectors will enable further observations of similar systems,” Fairhurst says. “They will enable us to better understand both the fundamental physics governing these black hole binaries and the astrophysical mechanisms that lead to their formation.”

Haster adds, “Each new detection provides important insights about the universe, reminding us that each observed merger is both an astrophysical discovery but also an invaluable laboratory for probing the fundamental laws of physics”.

The observations are described in The Astrophysical Journal Letters.

The post Rapidly spinning black holes put new limit on ultralight bosons appeared first on Physics World.

  •  

Jesper Grimstrup’s The Ant Mill: could his anti-string-theory rant do string theorists a favour?

Imagine you had a bad breakup in college. Your ex-partner is furious and self-publishes a book that names you in its title. You’re so humiliated that you only dimly remember this ex, though the book’s details and anecdotes ring true.

According to the book, you used to be inventive, perceptive and dashing. Then you started hanging out with the wrong crowd, and became competitive, self-involved and incapable of true friendship. Your ex struggles to turn you around; failing, they leave. The book, though, is so over-the-top that by the end you stop cringing and find it a hoot.

That’s how I think most Physics World readers will react to The Ant Mill: How Theoretical High-energy Physics Descended into Groupthink, Tribalism and Mass Production of Research. Its author and self-publisher is the Danish mathematician-physicist Jesper Grimstrup, whose previous book was Shell Beach: the Search for the Final Theory.

After receiving his PhD in theoretical physics at the Technical University of Vienna in 2002, Grimstrup writes, he was “one of the young rebels” embarking on “a completely unexplored area” of theoretical physics, combining elements of loop quantum gravity and noncommutative geometry. But there followed a decade of rejected articles and lack of opportunities.

Grimstrup became “disillusioned, disheartened, and indignant” and in 2012 left the field, selling his flat in Copenhagen to finance his work. Grimstrup says he is now a “self-employed researcher and writer” who lives somewhere near the Danish capital. You can support him either through Ko-fi or Paypal.

Fomenting fear

The Ant Mill opens with a copy of the first page of the letter that Grimstrup’s fellow Dane Niels Bohr sent in 1917 to the University of Copenhagen successfully requesting a four-storey building for his physics institute. Grimstrup juxtaposes this incident with the rejection of his funding request, almost a century later, by the Danish Council for Independent Research.

Today, he writes, theoretical physics faces a situation “like the one it faced at the time of Niels Bohr”, but structural and cultural factors have severely hampered it, making it impossible to pursue promising new ideas. These include Grimstrup’s own “quantum holonomy theory, which is a candidate for a fundamental theory”. The Ant Mill is his diagnosis of how this came about.

The Standard Model of particle physics, according to Grimstrup, is dominated by influential groups that squeeze out other approaches

A major culprit, in Grimstrup’s eyes, was the Standard Model of particle physics. That completed a structure for which theorists were trained to be architects and should have led to the flourishing of a new crop of theoretical ideas. But it had the opposite effect. The field, according to Grimstrup, is now dominated by influential groups that squeeze out other approaches.

The biggest and most powerful is string theory, with loop quantum gravity its chief rival. Neither member of the coterie can make testable predictions, yet because they control jobs, publications and grants they intimidate young researchers and create what Grimstrup calls an “undercurrent of fear”. (I leave assessment of this claim to young theorists.)

Roughly half the chapters begin with an anecdote in which Grimstrup describes an instance of rejection by a colleague, editor or funding agency. In the book’s longest chapter Grimstrup talks about his various rejections – by the Carlsberg Foundation, The European Physics Journal C, International Journal of Modern Physics A, Classical and Quantum Gravity, Reports on Mathematical Physics, Journal of Geometry and Physics and the Journal of Noncommutative Geometry.

Grimstrup says that the reviewers and editors of these journals told him that his papers variously lacked concrete physical results, were exercises in mathematics, seemed the same as other papers, or lacked “relevance and significance”. Grimstrup sees this as the coterie’s handiwork, for such journals are full of string theory papers open to the same criticism.

“Science is many things,” Grimstrup writes at the end. “[S]imultaneously boring and scary, it is both Indiana Jones and anonymous bureaucrats, and it is precisely this diversity that is missing in the modern version of science.” What the field needs is “courage…hunger…ambition…unwillingness to compromise…anarchy”.

Grimstrup hopes that his book will have an impact, helping to inspire young researchers to revolt, and to make all the scientific bureaucrats and apparatchiks and bookkeepers and accountants “wake up and remember who they truly are”.

The critical point

The Ant Mill is an example of what I have called “rant literature” or rant-lit. Evangelical, convinced that exposing truth will make sinners come to their senses and change their evil ways, rant lit can be fun to read, for it is passionate and full of florid metaphors.

Theoretical physicists, Grimstrup writes, have become “obedient idiots” and “technicians” (the phrase appearing in an e-mail cited in the book that was written by an unidentified person with whom the author disagrees). Theoretical physics, he suggests, has become a “kingdom”, a “cult”, a “hamster wheel” and “ant mill”, in which the ants march around in a pre-programmed “death spiral”.

Grimstrup hammers away at theories lacking falsifiability, but his vehemence invites you to ask: “Is falsifiability really the sole criterion for deciding whether to accept or fail to pursue a theory?”

An attentive reader, however, may come away with a different lesson. Grimstrup calls falsifiability the “crown jewel of the natural sciences” and hammers away at theories lacking it. But his vehemence invites you to ask: “Is falsifiability really the sole criterion for deciding whether to accept or fail to pursue a theory?”

In his 2013 book String Theory and the Scientific Method, for instance, the Stockholm University philosopher of science Richard Dawid suggested rescuing the scientific status of string theory by adding such non-empirical criteria to evaluating theories as clarity, coherence and lack of alternatives. It’s an approach that both rescues the formalistic approach to the scientific method and undermines it.

Dawid, you see, is making the formalism follow the practice rather than the other way around. In other words, he is able to reformulate how we make theories because he already knows how theorizing works – not because he only truly knows what it is to theorize after he gets the formalism right.

Grimstrup’s rant, too, might remind you of the birth of the Yang–Mills theory in 1954. Developed by Chen Ning Yang and Robert Mills, it was a theory of nuclear binding that integrated much of what was known about elementary particle theory but implied the existence of massless force-carrying particles that then were known not to exist. In fact, at one seminar Wolfgang Pauli unleashed a tirade against Yang for proposing so obviously flawed a theory.

The theory, however, became central to theoretical physics two decades later, after theorists learned more about the structure of the world. The Yang–Mills story, in other words, reveals that theory-making does not always conform to formal strictures and does not always require a testable prediction. Sometimes it just articulates the best way to make sense of the world apart from proof or evidence.

The lesson I draw is that becoming the target of a rant might not always make you feel repentant and ashamed. It might inspire you into deep reflection on who you are in a way that is insightful and vindicating. It might even make you more rather than less confident about why you’re doing what you’re doing

Your ex, of course, would be horrified.

The post Jesper Grimstrup’s <em>The Ant Mill</em>: could his anti-string-theory rant do string theorists a favour? appeared first on Physics World.

  •  

Hints of a boundary between phases of nuclear matter found at RHIC

In a major advance for nuclear physics, scientists on the STAR Detector at the Relativistic Heavy Ion Collider (RHIC) in the US have spotted subtle but striking fluctuations in the number of protons emerging from high-energy gold–gold collisions. The observation might be the most compelling sign yet of the long-sought “critical point” marking a boundary separating different phases of nuclear matter. This similar to how water can exist in liquid or vapour phases depending on temperature and pressure.

Team member Frank Geurts at Rice University in the US tells Physics World that these findings could confirm that the “generic physics properties of phase diagrams that we know for many chemical substances apply to our most fundamental understanding of nuclear matter, too.”

A phase diagram maps how a substance transforms between solid, liquid, and gas. For everyday materials like water, the diagram is familiar, but the behaviour of nuclear matter under extreme heat and pressure remains a mystery.

Atomic nuclei are made of protons and neutrons tightly bound together. These protons and neutrons are themselves made of quarks that are held together by gluons. When nuclei are smashed together at high energies, the protons and neutrons “melt” into a fluid of quarks and gluons called a quark–gluon plasma. This exotic high-temperature state is thought to have filled the universe just microseconds after the Big Bang.

Smashing gold ions

The quark–gluon plasma is studied by accelerating heavy ions like gold nuclei to nearly the speed of light and smashing them together. “The advantage of using heavy-ion collisions in colliders such as RHIC is that we can repeat the experiment many millions, if not billions, of times,” Geurts explains.

By adjusting the collision energy, researchers can control the temperature and density of the fleeting quark–gluon plasma they create. This allows physicists to explore the transition between ordinary nuclear matter and the quark–gluon plasma. Within this transition, theory predicts the existence of a critical point where gradual change becomes abrupt.

Now, the STAR Collaboration has focused on measuring the minute fluctuations in the number of protons produced in each collision. These “proton cumulants,” says Geurts, are statistical quantities that “help quantify the shape of a distribution – here, the distribution of the number of protons that we measure”.

In simple terms, the first two cumulants correspond to the average and width of that distribution, while higher-order cumulants describe its asymmetry and sharpness. Ratios of these cumulants are tied to fundamental properties known as susceptibilities, which become highly sensitive near a critical point.

Unexpected discovery

Over three years of experiments, the STAR team studied gold–gold collisions at a wide range of energies, using sophisticated detectors to track and identify the protons and antiprotons created in each event. By comparing how the number of these particles changed with energy, the researchers discovered something unexpected.

As the collision energy decreased, the fluctuations in proton numbers did not follow a smooth trend. “STAR observed what it calls non-monotonic behaviour,” Geurts explains. “While at higher energies the ratios appear to be suppressed, STAR observes an enhancement at lower energies.” Such irregular changes, he said, are consistent with what might happen if the collisions pass near the critical point — the boundary separating different phases of nuclear matter.

For Volodymyr Vovchenko, a physicist at the University of Houston who was not involved in the research, the new measurements represent “a major step forward”. He says that “the STAR Collaboration has delivered the most precise proton-fluctuation data to date across several collision energies”.

Still, interpretation remains delicate. The corrections required to extract pure physical signals from the raw data are complex, and theoretical calculations lag behind in providing precise predictions for what should happen near the critical point.

“The necessary experimental corrections are intricate,” Vovchenko said, and some theoretical models “do not yet implement these corrections in a fully consistent way.” That mismatch, he cautions, “can blur apples-to-apples comparisons.”

The path forward

The STAR team is now studying new data from lower-energy collisions, focusing on the range where the signal appears strongest. The results could reveal whether the observed pattern marks the presence of a nuclear matter critical point or stems from more conventional effects.

Meanwhile, theorists are racing to catch up. “The ball now moves largely to theory’s court,” Vovchenko says. He emphasizes the need for “quantitative predictions across energies and cumulants of various order that are appropriate for apples-to-apples comparisons with these data.”

Future experiments, including RHIC’s fixed-target program and new facilities such as the FAIR accelerator in Germany, will extend the search even further. By probing lower energies and producing vastly larger datasets, they aim to map the transition between ordinary nuclear matter and quark–gluon plasma with unprecedented precision.

Whether or not the critical point is finally revealed, the new data are a milestone in the exploration of the strong force and the early universe. As Geurts put it, these findings trace “landmark properties of the most fundamental phase diagram of nuclear matter,” bringing physicists one step closer to charting how everything  – from protons to stars – first came to be.

The research is described in Physical Review Letters.

The post Hints of a boundary between phases of nuclear matter found at RHIC appeared first on Physics World.

  •  

Cosmic muons monitor river sediments surrounding Shanghai tunnel

Photograph of the portable muon detector in the Shanghai tunnel
Trundling along A portable version of the team’s muon detector was used along the length of the tunnel. (Courtesy: Kim Siang Khaw et al/Journal of Applied Physics/CC BY 4.0)

Researchers in China say that they are the first to use cosmic-ray muography to monitor the region surrounding a tunnel. Described as a lightweight, robust and affordable scintillator setup, the technology was developed by Kim Siang Khaw at Shanghai Jiao Tong University and colleagues. They hope that their approach could provide a reliable and non-invasive method for the real-time monitoring of subterranean infrastructure.

Monitoring the structural health of tunnels and other underground infrastructure is challenging because of the lack of access. Inspection often relies on techniques such as borehole drilling, sonar scanning, and multibeam echo sounders to determine when maintenance is needed. These methods can be invasive, low resolution and involve costly and disruptive shutdowns. As a result there is often a trade-off between the quality of inspections and the frequency at which they are done.

This applies to the Shanghai Outer Ring Tunnel: a major travel artery in China’s largest city, which runs for almost 3 km beneath the Huangpu River. Completed in 2023, the submerged section of the tunnel is immersed in water-saturated sediment, creating a unique set of challenges for structural inspection.

Time-varying stresses

In particular, different layers of sediment surrounding the tunnel can vary widely in their density, permeability, and cohesion. As they build up above the tunnel, they can impart uneven, time-varying stresses, making it incredibly challenging for existing techniques to accurately assess when maintenance is needed.

To address these challenges, a multi-disciplinary team was formed to explore possible solutions. “During these talks, the [Shanghai Municipal Bureau of Planning and Natural Resources] emphasized the practical challenges of monitoring sediment build-up around critical infrastructure, such as the Shanghai Outer Ring Tunnel, without causing disruptive and costly shutdowns,” Khaw describes.

Among the most promising solutions they discussed was muography, which involves detecting the muons created when high-energy cosmic rays interact with Earth’s upper atmosphere. These muons can penetrate deep beneath Earth’s surface and are absorbed at highly predictable rates depending on the density of the material they pass through.

A simple version of muography involves placing a muon detector on the surface of an object and another detector beneath the object. By comparing the muon fluxes in the two detectors, the density of the object can be determined. By measuring the flux attenuation along different paths through the object, an image of the interior density of the object can be obtained.

Muography has been used for several decades in areas as diverse as archaeology, volcanology and monitoring riverbanks. So far, however, its potential for monitoring underground infrastructure has gone largely untapped.

“We took this ‘old-school’ technique and pioneered its use in a completely new scenario: dynamically monitoring low-density, watery sediment build-up above a submerged, operational tunnel,” Khaw explains. “Our approach was not just in the hardware, but in integrating the detector data with a simplified tunnel model and validating it against environmental factors like river tides.”

With its durable, lightweight, and affordable design, the scintillator features a dual-layer configuration that suppresses background noise while capturing cosmic muons over a broad range of angles. Crucially, it is portable and could be discreetly positioned inside an underground tunnel to carry out real-time measurements, even as traffic flows.

Sediment profiles

To test the design, Khaw’s team took measurements along the full length of the Shanghai Outer Ring Tunnel while it was undergoing maintenance; allowing them to map out a profile of the sediment surrounding the tunnel. They then compared their muon flux measurements with model predictions based on sediment profiles for the Huangpu River measured in previous years. They were pleased to obtain results that were better than anticipated.

“We didn’t know the actual tidal height until we completed the measurement and checked tidal gauge data,” Khaw describes. “The most surprising and exciting discovery was a clear anti-correlation between muon flux and the tidal height of the Huangpu River.” Unexpectedly, the detector was also highly effective at measuring the real-time height of water above the tunnel, with its detected flux closely following the ebb and flow of the tides.

Reassuringly, the team’s measurements confirmed that there are no as-yet unmapped obstructions or gaps in the sediment above the tunnel thereby confirming the structure’s safety.

“Additionally, we have effectively shown a dual-purpose technology: it offers a reliable, non-invasive method for sediment monitoring and also reveals a new technique for tidal monitoring,” says Khaw. “This opens the possibility of using muon detectors as multi-functional sensors for comprehensive urban infrastructure and environmental oversight.”

The research is described in the Journal of Applied Physics.

The post Cosmic muons monitor river sediments surrounding Shanghai tunnel appeared first on Physics World.

  •  

Discovery of the Higgs boson at CERN inspires new stained-glass artwork

London-based artist Oksana Kondratyeva has created a new stained-glass artwork – entitled Discovery – that is inspired by the detection of the Higgs boson at CERN’s Large Hadron Collider (LHC) in 2012.

Born in Ukraine, Kondratyeva has a PhD in the theory of architecture and has an artist residency at the Romont Glass Museum (Vitromusée Romont) in Switzerland, where Discovery is currently exhibited.

In 2023 Kondratyeva travelled to visit the LHC at CERN, which she notes represents “more than a laboratory [but] a gateway to the unknown”.

Discovery draws inspiration from the awe I felt standing at the frontier of human knowledge, where particles collide at unimaginable energies and new forms of matter are revealed,” Kondratyeva told Physics World.

Kondratyeva says that the focal point of the artwork – a circle structured with geometric precision – represents the collision of two high-energy protons.

The surrounding lead lines in the panel trace the trajectories of particle decays as they move through a magnetic field: right-curved lines represent positively charged particles, left-curved lines indicate negatively charged ones, while straight lines signify neutral particles unaffected by the magnetic field.

The geometric composition within the central circle reflects the hidden symmetries of physical laws – patterns that only emerge when studying the behaviour of particle interactions.

Kondratyeva says that the use of mouth-blown flashed glass adds further depth to the piece, with colours and subtle shades moving from hot and luminous at the centre to cooler, more subdued tones toward the edges.

“Through glass, light and colour I sought to express the invisible forces and delicate symmetries that define our universe – ideas born in the realm of physics, yet deeply resonant in artistic expression,” notes Kondratyeva. “The work also continues a long tradition of stained glass as a medium of storytelling, reflecting the deep symmetries of nature and the human drive to find order in chaos.”

In 2022 Kondratyeva teamed up with Rigetti Computing to create piece of art inspired by the packaging for a quantum chip. Entitled Per scientiam ad astra (through science to the stars), the artwork was displayed at the 2024 British Glass Biennale at the Ruskin Glass Centre in Stourbridge, UK.

The post Discovery of the Higgs boson at CERN inspires new stained-glass artwork appeared first on Physics World.

  •