↩ Accueil

Vue lecture

CERN accepts $1bn in private cash towards Future Circular Collider

The CERN particle-physics lab near Geneva has received $1bn from private donors towards the construction of the Future Circular Collider (FCC). The cash marks the first time in the lab’s 72-year history that individuals and philanthropic foundations have agreed to support a major CERN project. If built, the FCC would be the successor to the Large Hadron Collider (LHC), where the Higgs boson was discovered.

CERN originally released a four-volume conceptual design report for the FCC in early 2019, with more detail included in a three-volume feasibility study that came out last year. It calls for a giant tunnel some 90.7 km in circumference – roughly three times as long as the LHC  – that would be built about 200 m underground on average.

The FCC has been recommended as the preferred option for the next flagship collider at CERN in the ongoing process to update the European Strategy for Particle Physics, which will be passed over to the  CERN Council in May 2026.If the plans are given the green light by CERN Council in 2028, construction on the FCC electron-positron machine, dubbed FCC-ee, would begin in 2030. It would start operations in 2047, a few years after the High Luminosity LHC (HL-LHC) closes down, and run for about 15 years until the early 2060s.

The FCC-ee would focus on creating a million Higgs particles in total to allow physicists to study its properties with an accuracy an order of magnitude better that possible with the LHC. The FCC feasibility study then calls for a hadron machine, dubbed FCC-hh, to replace the FCC-ee in the existing 91 km tunnel. It would be a “discovery machine”, smashing together protons at high energy – about 85 TeV – with the aim of creating new particles. If built, the FCC-hh will begin operation in 2073 and run to the end of the century.

The funding model for the FCC-ee, which is expected to have a price tag of about $18bn, is still a work in progress. But it is estimated that at least two-thirds of the construction costs will come from CERN’s 24 member states with the rest needing to be found elsewhere. One option to plug that gap is private donations and in late December CERN received a significant boost from several organizations including the Breakthrough Prize Foundation, the Eric and Wendy Schmidt Fund for Strategic Innovation, and the entrepreneurs John Elkann and Xavier Niel. Together, they pledged a total of $1bn towards the FCC-ee.

Costas Fountas, president of the CERN Council, says CERN is “extremely grateful” for the interest. “This once again demonstrates CERN’s relevance and positive impact on society, and the strong interest in CERN’s future that exists well beyond our own particle physics community,” he notes.

Eric Schmidt, who founded Google, claims that he and Wendy Schmidt were “inspired by the ambition of this project and by what it could mean for the future of humanity”. The FCC, he believes, is an instrument that “could push the boundaries of human knowledge and deepen our understanding of the fundamental laws of the Universe” and could lead to technologies that could benefit society “in profound ways” from medicine to computing to sustainable energy.

The cash promised has been welcomed by outgoing CERN director-general Fabiola Gianotti. “It’s the first time in history that private donors wish to partner with CERN to build an extraordinary research instrument that will allow humanity to take major steps forward in our understanding of fundamental physics and the universe,” she said. “I am profoundly grateful to them for their generosity, vision, and unwavering commitment to knowledge and exploration.”

Further boost

The cash comes a few months after the Circular Electron–Positron Collider (CEPC) – a rival collider to the FCC-ee that also involves building a huge 100 km tunnel to study the Higgs in unprecedented detail – was not considered for inclusion in China’s next five-year plan, which runs from 2026 to 2030. There has been much discussion in China about whether the CEPC is the right project for the country, with the collider facing criticism from particle physicist and Nobel laureate Chen-Ning Yang, before he died last year.

Wang Yifang of the Institute of High Energy Physics (IHEP) in Beijing says they will submit the CEPC for consideration again in 2030 unless FCC is officially approved before then. But for particle theorist John Ellis from Kings College London, China’s decision to effectively put the CEPC on the back burner  “certainly simplifies the FCC discussion”. “However, an opportunity for growing the world particle physics community has been lost, or at least deferred [by the decision],” Ellis told Physics World.

Ellis adds, however, that he would welcome China’s participation in the FCC. “Their accelerator and detector [technical design reviews] show that they could bring a lot to the table, if the political obstacles can be overcome,” he says.

However, if the FCC-ee goes ahead China could perhaps make significant “in-kind” contributions rather like those that occur with the ITER experimental fusion reactor, which is currently being built in France. In this case, instead of cash payments, the countries provide components, equipment and other materials.

Those considerations and more will now fall to the British physicist Mark Thomson, who took over from Gianotti as CERN director-general on 1 January for a five-year term. As well as working on funding requirements for the FCC-ee, top of his in-tray will actually be shutting down the LHC in June to make way for further work on the HL-LHC, which involves installing powerful new superconducting magnets and improving the detection.

About 90% of the 27 km LHC accelerator will be affected by the upgrade with a major part being to replace the magnets in the final focus systems of the two large experiments, ATLAS and CMS. These magnets will take the incoming beams and then focus them down to less than 10 µm in cross section. The upgrade includes the installation of brand new state-of-the-art niobium-tin (Nb3Sn) superconducting focusing magnets.

The HL-LHC will probably not turn on until 2030, at which time Thomson’s term will nearly be over, but that doesn’t deter him from leading the world’s foremost particle-physics lab. “It’s an incredibly exciting project,” Thomson told the Guardian. “It’s more interesting than just sitting here with the machine hammering away.”

The post CERN accepts $1bn in private cash towards Future Circular Collider appeared first on Physics World.

  •  

Particle and nuclear physics: quirky favourites from 2025

Particle and nuclear physics evokes evokes images of huge accelerators probing the extremes of matter. But in this round-up of my favourite research of 2025 I have chosen five stories in which particle and nuclear physics forms the basis for a range of quirky and fascinating research from astrophysics to archaeology.

CERN experiment sheds light on missing blazar radiation

The Fireball experiment installed in the HiRadMat irradiation area at CERN
Stable discovery The Fireball experiment installed in the HiRadMat irradiation area at CERN. (Courtesy: Gianluca Gregori)

My first pick involves simulating the vast cosmic plasma in the lab. Blazars are extremely bright galaxies that are powered by supermassive black holes. They emit intense jets of radiation, including teraelectronvolt gamma rays – which can be detected by astronomers if a jet happens to point at Earth. As these high-energy photons travel through intergalactic space, they interact with background starlight, producing numerous electron–positron pairs. These pairs should, in theory, generate gigaelectronvolt gamma rays – but this secondary radiation has never been observed. One explanation is that intergalactic magnetic fields deflect these pairs and the resulting gamma rays away from our line of sight. However, there is no conclusive evidence for such fields. Another theory is that plasma instabilities in the sparse intergalactic medium could dissipate the energy of the pair beams. Now, physicists working on the Fireball experiment at CERN have simulated the effect of plasma instabilities by firing a beam of electron–positron pairs through a metre-long argon plasma. They found that plasma instabilities are too weak to account for the missing gamma radiation – strengthening the case for the existence of primordial intergalactic magnetic fields.

Portable source could produce high-energy muon beams

A compact source of muons could soon be discovering hidden chambers in ancient pyramids. Muons are subatomic particles similar to electrons but 200 times heavier. They are produced in copious amounts in the atmosphere by cosmic rays. These cosmic muons can penetrate long distances into materials and are finding increasing use in “muon tomography” – a technique that has imaged the interiors of huge objects such as volcanoes, pyramids and nuclear reactors. One downside of muon tomography is that muons are always vertically incident, limiting opportunities for imaging. While beams of muons can be made in accelerators, these are large and expensive facilities – and the direction of such beams are also fixed. Now, physicists at Lawrence Berkeley National Laboratory have demonstrated a compact, and potentially portable method for generating high-energy muon beams using laser plasma acceleration. It uses an ultra-intense, tightly focused laser pulse to accelerate electrons in a short plasma channel. These electrons then strike a metal target creating a muon beam. With more work, compact and portable muon sources could be developed, leading to new possibilities for non-destructive imaging in archaeology, geology, and nuclear safety.

Radioactive BEC could be a ‘superradiant neutrino laser’

Could a “superradiant neutrino laser” be created using radioactive atoms in an ultracold Bose–Einstein condensate (BEC)? The answer is “maybe”, according to theoretical work by two physicists in the US. Their proposal involves creating a BEC of rubidium-83, which undergoes beta decay involving the emission of neutrinos. Unlike photons, neutrinos are fermions and therefore cannot form the basis of conventional laser. However, if the atoms in the BEC are close enough together, quantum interactions between the atomic nuclei could accelerate beta decay and create a coherent, laser-like burst of neutrinos. This is a well-known phenomenon called superradiance. While the idea could be tested using existing technologies for making BECs, it would be a challenge to deploy radioactive rubidium in a conventional atomic physics lab. Another drawback is that there are no obvious applications for a neutrino laser – at least for now. However, the very idea of a neutrino laser is so cool that I am hoping that someone will try to build one soon!

Antimatter could be transported by road

Photo of the BASE-STEP system being transported by overhead crane through the experimental hall of the Antimatter Factory at CERN. The system is an irregularly-shaped gray box and it's suspended from a large, bright yellow crane below the hall ceiling. A hard-hatted physicist, Marcel Leonhardt, looks on while holding a tablet displaying a dashboard of parameters.
Lifted by crane The BASE-STEP system is moved to a lorry at CERN. Marcel Leonhardt (right), physicist at HHU, checks the status of the device and confinement of the protons on a tablet. (Courtesy: BASE/Julia Jäger)

If you happen to be driving between Geneva and Dusseldorf in the future, you might just overtake a shipment of antimatter. It will be on its way to an experiment that could solve some of the biggest mysteries in physics – including why there is much more matter than antimatter in the universe. While antielectrons (positrons) can be created in a small lab, antiprotons can only be created at large and expensive accelerators. This limits where antimatter experiments can be done. But now, physicists on the BASE collaboration at CERN have shown that it should be possible to transport antiprotons by road. Protons stood in for antiprotons in their demonstration and the particles were held in an electromagnetic trap at cryogenic temperatures and ultralow pressure. By transporting their BASE-STEP system around CERN’s Meyrin site, they showed it was stable and robust enough to handle the rigors of road travel.  The system will now be re-configured to transport antiprotons about 700 km to Germany’s Heinrich Heine University. There, physicists hope to search for charge–parity–time (CPT) violations in protons and antiprotons with a precision at least 100 times higher than is currently possible at CERN. The BASE collaboration is also cited in our Top 10 Breakthroughs of 2025 for their quantum control of a single antiproton.

Solid-state nuclear clock ticks ever closer

Solid quartz crystals revolutionized time keeping in the 20th century, so could solid-state nuclear clocks soon do the same? Today, the best timekeepers use the light emitted in atomic transitions. In principle, even better clocks could be made using very-low-energy gamma-rays emitted in some nuclear transitions. Nuclei are much smaller than atoms and these transitions are governed by the strong force. This means that such nuclear clocks would be far less susceptible to performance-degrading electromagnetic noise. And unlike atomic clocks, the nuclei could be embedded in solids – which would greatly simplify clock design. Thorium-229 shows great promise as a clock nucleus but it has two practical shortcomings: it is radioactive and extremely expensive. The solution to both of these problems is a clock design that uses only a tiny amount of thorium-229. Now researchers in the US have shown that physical vapour deposition can used to create extremely thin films of thorium tetrafluoride. Characterization using a vacuum ultraviolet laser confirmed the accessibility of the clock transition – but its lifetime was shorter and the signal less intense than measured in thorium-doped crystals. However, the researchers believe that these unexpected results should not dissuade those aiming to build nuclear clocks.

 

The post Particle and nuclear physics: quirky favourites from 2025 appeared first on Physics World.

  •  

Higgs decay to muon–antimuon pairs sheds light on the origin of mass

A new measurement by CERN’s ATLAS Collaboration has strengthened evidence that the masses of fundamental particles originate through their interaction with the Higgs field. Building on earlier results from CERN’s CMS Collaboration, the observations suggest that muon–antimuon pairs (dimuons) can be created by the decay of Higgs bosons.

In the Standard Model of particle physics, the fermionic particles are organized into three different generations, broadly in terms of their masses. The first generation comprises the two lightest quarks (up and down), the lightest lepton (the electron) and the electron neutrino. The second includes the strange and charm quarks, the muon and its neutrino; and the third generation the bottom and top quarks, the tau and its neutrino. In terms of the charged fermions, the top quark is nearly 340,000 times heavier than the lightest – the electron.

All of the quarks and leptons have both right- and left-handed components, which relate to the direction of a particle’s spin relative to its direction of motion (right-handed if both directions are aligned; left-handed if they are anti-aligned).

Right- and left-handed particles are treated the same by the strong and electromagnetic forces, regardless of their generation in the Standard Model. The weak force, however, only acts on left-handed particles.

Flipping handedness

In the 1960s, Steven Weinberg uncovered a theoretical solution to this seemingly bizarre asymmetry. He proposed that the Higgs field acts as a bridge between each particle’s left- and right-handed components, in a way that respects the Standard Model’s underlying symmetry. This interaction causes the particle to constantly flip between its two components, creating a resistance to motion that can be perceived as mass.

However, this deepens the mystery. According to Weinberg’s theory, higher-mass particles must interact more strongly with this Higgs field – but in contrast, the strong and electromagnetic forces can only differentiate between these particles according to their charges (colour and electrical). The question is how does Higgs field can distinguish between particles in different generations if their charges are identical?

Key to solving this mystery will be to observe the decay products of Higgs bosons with different interaction strengths. For stronger interactions, corresponding to heavier generations, these decays should become far more likely.

In 2022, both the ATLAS and CMS collaborations did just this. Through proton–proton collision experiments at CERN’s Large Hadron Collider (LHC), the groups independently observed Higgs bosons decaying to tau–antitau pairs. This relatively common process occurred at the same rate as predicted by theory.

Rare decay

A year earlier, similar experiments by the CMS collaboration probed the second generation by observing muon–antimuon pairs from the decays of Higgs bosons. This rarer event occurs in just 1 in 5000 Higgs decays.

In their latest study, the ATLAS collaboration have now reproduced this CMS result independently. They collided protons at about 13 TeV and observed muon–antimuon pairs in the same range of energies predicted by theory.

Through the improvements they offer on the earlier CMS analysis, these new results bring dimuon observations to a statistical significance of 3.4σ. This is well below the 5σ standard required for the observation to be considered a discovery, so more work is needed.

The research could also provide guidance in the search for much rarer Higgs interactions that involve first-generation particles. This includes decay electron–positron pairs, originating from Higgs bosons which decay in just 1 in 200 million cases.

The research is described in Physical Review Letters.

The post Higgs decay to muon–antimuon pairs sheds light on the origin of mass appeared first on Physics World.

  •  

Russia plans to revive abandoned Soviet-era particle accelerator

Russia wants to revive a Soviet-era particle accelerator that has been abandoned since the 1990s. The Kurchatov Institute for High Energy Physics has allocated 176 million rubles ($25m) to assess the current condition of the unfinished 600 GeV Proton Accelerator and Storage Complex (UNK) in Protvino near Moscow. The move is part of plans to strengthen Russia’s technological sovereignty and its activity in high-energy physics.

Although work on the UNK was officially halted in the 1990s, construction only ceased in 2013. At that time, a 21 km tunnel had been built at a depth of 60 m along with underground experimental hall lighting and ventilation systems.

In February 2025, physicist Mikhail Kovalchuk, president of the Kurchatov Institute National Research Center, noted in Russia’s Kommersant newspaper that enormous intellectual and material resources had been invested in the UNK’s design and development before it was cancelled.

According to Kovalchuk, Western sanctions provided an additional impetus to restore the project, as scientists that had previously worked in CERN projects could no longer do so.

“By participating in [CERN] projects, we not only preserved our scientific potential and survived a difficult period, but also enriched ourselves intellectually and technologically,” added Kovalchuk. “Today we are self-sufficient.”

Anatoli Romaniouk, a Russian particle physicist who has worked at CERN since 1990, told Physics World that a revival of the UNK will at least maintain fundamental physics research in Russia.

“If this project is realized, then there is hope that it will be possible to at least somewhat slow down the scientific lag of Russian physics with global science,” says Romaniouk.

While official plans for the accelerator have not been disclosed, it is thought that the proton beam energy could be upgraded to reach 3 TeV. Romaniouk says it is also unclear what kind of science will be done with the accelerator, which will depend on what ideas come forward.

Yet some Russian scientists say that it could be used to produce neutrinos. This would involve putting a neutrino detector nearby to characterize the beam before it is sent some 4000 km towards Lake Baikal where a neutrino detector – the Baikal Deep Underwater Neutrino Telescope – is already installed 1 km underground.

“I think it’s possible to find an area of ​​high-energy physics where the research with the help of this collider could be beneficial,” adds Romaniouk.

The post Russia plans to revive abandoned Soviet-era particle accelerator appeared first on Physics World.

  •  

Sterile neutrinos: KATRIN and MicroBooNE come up empty handed

Two major experiments have found no evidence for sterile neutrinos – hypothetical particles that could help explain some puzzling observations in particle physics. The KATRIN experiment searched for sterile neutrinos that could be produced during the radioactive decay of tritium; whereas the MicroBooNE experiment looked for the effect of sterile neutrinos on the transformation of muon neutrinos into electron neutrinos.

Neutrinos are low-mass subatomic particles with zero electric charge that interact with matter only via the weak nuclear force and gravity. This makes neutrinos difficult to detect, despite the fact that the particles are produced in copious numbers by the Sun, nuclear reactors and collisions in particle accelerators.

Neutrinos were first proposed in 1930 to explain the apparent missing momentum, spin and energy in the radioactive beta decay of nuclei. The they were first observed in 1956 and by 1975 physicists were confident that three types (flavours) of neutrino existed – electron, muon and tau – along with their respective antiparticles. At the same time, however, it was becoming apparent that something was amiss with the Standard Model description of neutrinos because the observed neutrino flux from sources like the Sun did not tally with theoretical predictions.

Gaping holes

Then in the late 1990s experiments in Canada and Japan revealed that neutrinos of one flavour transform into other flavours as then propagate through space. This quantum phenomenon is called neutrino oscillation and requires that neutrinos have both flavour and mass. Takaaki Kajita and Art McDonald shared the 2015 Nobel Prize for Physics for this discovery – but that is not the end of the story.

One gaping hole in our knowledge is that physicists do not know the neutrino masses – having only measured upper limits for the three flavours. Furthermore, there is some experimental evidence that the current Standard-Model description of neutrino oscillation is not quite right. This includes lower-than-expected neutrino fluxes from some beta-decaying nuclei and some anomalous oscillations in neutrino beams.

One possible explanation for these oscillation anomalies is the existence of a fourth type of neutrino. Because we have yet to detect this particle, the assumption is that it does not interact via the weak interaction – which is why these hypothetical particles are called sterile neutrinos.

Electron energy curve

Now, two very different neutrino experiments have both reported no evidence of sterile neutrinos. One is KATRIN, which is located at the Karlsruhe Institute of Technology (KIT) in Germany. It has the prime mission of making a very precise measurement of the mass of the electron antineutrino. The idea is to measure the energy spectrum of electrons emitted in the beta decay of tritium and infer an upper limit on the mass of the electron antineutrino from the shape of the curve.

If sterile neutrinos exist, then they could sometimes be emitted in place of electron antineutrinos during beta decay. This would change the electron energy spectrum – but this was not observed at KATRIN.

“In the measurement campaigns underlying this analysis, we recorded over 36 million electrons and compared the measured spectrum with theoretical models. We found no indication of sterile neutrinos,” says Kathrin Valerius of the Institute for Astroparticle Physics at KIT and co-spokesperson of the KATRIN collaboration.

Meanwhile, physicists on the MicroBooNE experiment at Fermilab in the US have looked for evidence for sterile neutrinos in how muon neutrinos oscillate into electron neutrinos. Beams of muon neutrinos are created by firing a proton beam at a solid target. The neutrinos at Fermilab then travel several hundred metres (in part through solid ground) to MicroBooNE’s liquid-argon time projection chamber. This detects electron neutrinos with high spatial and energy resolution, allowing detailed studies of neutrino oscillations.

If sterile neutrinos exist, they would be involved in the oscillation process and would therefore affect the number of electron neutrinos detected by MicroBooNE. Neutrino beams from two different sources were used in the experiments, but no evidence for sterile neutrinos was found.

Together, these two experiments rule out sterile neutrinos as an explanation for some – but not all – previously observed oscillation anomalies. So more work is needed to fully understand neutrino physics. Indeed, current and future neutrino experiments are well placed to discover physics beyond the Standard Model, which could lead to solutions to some of the greatest mysteries of physics.

“Any time you rule out one place where physics beyond the Standard Model could be, that makes you look in other places,” says Justin Evans at the UK’s University of Manchester, who is co-spokesperson for MicroBooNE. “This is a result that is going to really spur a creative push in the neutrino physics community to come up with yet more exciting ways of looking for new physics.”

Both groups report their results in papers in Nature: Katrin paper; MicroBooNE paper.

The post Sterile neutrinos: KATRIN and MicroBooNE come up empty handed appeared first on Physics World.

  •  

Fermilab opens new building dedicated to Tevatron pioneer Helen Edwards

Fermilab has officially opened a new building named after the particle physicist Helen Edwards. Officials from the lab and the US Department of Energy (DOE) opened the Helen Edwards Engineering Research Center at a ceremony held on 5 December.  The new building is the lab’s largest purpose-built lab and office space since the lab’s iconic Wilson Hall, which was completed in 1974.

Construction of the Helen Edwards Engineering Research Center began in 2019 and was completed three years later. The centre is an 7500 m2 multi-story lab and office building that is adjacent and connected to Wilson Hall.

The new centre is designed as a collaborative lab where engineers, scientists and technicians design, build and test technologies across several areas of research such as neutrino science, particle detectors, quantum science and electronics.

The centre also features cleanrooms, vibration-sensitive labs and cryogenic facilities in which the components of the near detector for the Deep Underground Neutrino Experiment will be assembled and tested.

A pioneering spirit

With a PhD in experimental particle physics from Cornell University, Edwards was heavily involved with commissioning the university’s 10 GeV electron synchrotron. In 1970 Fermilab’s director Robert Wilson appointed Edwards as associate head of the lab’s booster section and she later became head of the accelerator division.

While at Fermilab, Edwards’ primary responsibility was designing, constructing, commissioning and operating the Tevatron, which led to the discoveries of the top quark in 1995 and the tau neutrino in 2000.

Edwards retired in the early 1990s but continued to work as guest scientists at Fermilab and officially switched the Tevatron off during a ceremony held on 30 September 2011. Edwards died in 2016.

Darío Gil, the undersecretary for science at the DOE says that Edwards’ scientific work “is a symbol of the pioneering spirit of US research”.

“Her contributions to the Tevatron and the lab helped the US become a world leader in the study of elementary particles,” notes Gil. “We honour her legacy by naming this research centre after her as Fermilab continues shaping the next generation of research using [artificial intelligence], [machine learning] and quantum physics.”

The post Fermilab opens new building dedicated to Tevatron pioneer Helen Edwards appeared first on Physics World.

  •  

Scientists in China celebrate the completion of the underground JUNO neutrino observatory

The $330m Jiangmen Underground Neutrino Observatory (JUNO) has released its first results following the completion of the huge underground facility in August.

JUNO is located in Kaiping City, Guangdong Province, in the south of the country around 150 km west of Hong Kong.

Construction of the facility began in 2015 and was set to be complete some five years later. Yet the project suffered from serious flooding, which delayed construction.

JUNO, which is expected to run for more than 30 years, aims to study the relationship between the three types of neutrino: electron, muon and tau. Although JUNO will be able to detect neutrinos produced by supernovae as well as those from Earth, the observatory will mainly measure the energy spectrum of electron antineutrinos released by the Yangjiang and Taishan nuclear power plants, which both lie 52.5 km away.

To do this, the facility has a 80 m high and 50 m diameter experimental hall located 700 m underground. Its main feature is a 35 m radius spherical neutrino detector, containing 20,000 tonnes of liquid scintillator. When an electron antineutrino occasionally bumps into a proton in the liquid, it triggers a reaction that results in two flashes of light that are detected by the 43,000 photomultiplier tubes that observe the scintillator.

On 18 November, a paper was submitted to the arXiv preprint server concluding that the detector’s key performance indicators fully meet or surpass design expectations.

New measurement 

Neutrinos oscillate from one flavour to another as they travel near the speed of light, rarely interacting with matter. This oscillation is a result of each flavour being a combination of three neutrino mass states.

Yet scientists do not know the absolute masses of the three neutrinos but can measure neutrino oscillation parameters, known as θ12, θ23 and θ13, as well as the square of the mass differences (Δm2) between two different types of neutrinos.

A second JUNO paper submitted on 18 November used data collected between 26 August and 2 November to measure the solar neutrino oscillation parameter θ12 and Δm221 with a factor of 1.6 better precision than previous experiments.

Those earlier results, which used solar neutrinos instead of reactor antineutrinos, showed a 1.5 “sigma” discrepancy with the Standard Model of particle physics. The new JUNO measurements confirmed this difference, dubbed the solar neutrino tension, but further data will be needed to prove or disprove the finding.

“Achieving such precision within only two months of operation shows that JUNO is performing exactly as designed,” says Yifang Wang from the Institute of High Energy Physics of the Chinese Academy of Sciences, who is JUNO project manager and spokesperson. “With this level of accuracy, JUNO will soon determine the neutrino mass ordering, test the three-flavour oscillation framework, and search for new physics beyond it.”

JUNO, which is an international collaboration of more than 700 scientists from 75 institutions across 17 countries including China, France, Germany, Italy, Russia, Thailand, and the US, is the second neutrino experiment in China, after the Daya Bay Reactor Neutrino Experiment. It successfully measured a key neutrino oscillation parameter called θ13 in 2012 before being closed down in 2020.

JUNO is also one of three next-generation neutrino experiments, the other two being the Hyper-Kamiokande in Japan and the Deep Underground Neutrino Experiment in the US. Both are expected to become operational later this decade.

The post Scientists in China celebrate the completion of the underground JUNO neutrino observatory appeared first on Physics World.

  •  

Accelerator experiment sheds light on missing blazar radiation

New experiments at CERN by an international team have ruled out a potential source of intergalactic magnetic fields. The existence of such fields is invoked to explain why we do not observe secondary gamma rays originating from blazars.

Led by Charles Arrowsmith at the UK’s University of Oxford, the team suggests the absence of gamma rays could be the result of an unexplained phenomenon that took place in the early universe.

A blazar is an extraordinarily bright object with a supermassive black hole at its core. Some of the matter falling into the black hole is accelerated outwards in a pair of opposing jets, creating intense beams of radiation. If a blazar jet points towards Earth, we observe a bright source of light including high-energy teraelectronvolt gamma rays.

During their journey across intergalactic space, these gamma-ray photons will occasionally collide with the background starlight that permeates the universe. These collisions can create cascades of electrons and positrons that can then scatter off photons to create gamma rays in the gigaelectronvolt energy range. These gamma-rays should travel in the direction of the original jet, but this secondary radiation has never been detected.

Deflecting field

Magnetic fields could be the reason for this dearth, as Arrowsmith explains: “The electrons and positrons in the pair cascade would be deflected by an intergalactic magnetic field, so if this is strong enough, we could expect these pairs to be steered away from the line of sight to the blazar, along with the reprocessed gigaelectronvolt gamma rays.” It is not clear, however, that such fields exist – and if they do, what could have created them.

Another explanation for the missing gamma rays involves the extremely sparse plasma that permeates intergalactic space. The beam of electron–positron pairs could interact with this plasma, generating magnetic fields that separate the pairs. Over millions of years of travel, this process could lead to beam–plasma instabilities that reduce the beam’s ability to create gigaelectronvolt gamma rays that are focused on Earth.

Oxford’s Gianluca Gregori  explains, “We created an experimental platform at the HiRadMat facility at CERN to create electron–positron pairs and transport them through a metre-long ambient argon plasma, mimicking the interaction of pair cascades from blazars with the intergalactic medium”. Once the pairs had passed through the plasma, the team measured the degree to which they had been separated.

Tightly focused

Called Fireball, the experiment found that the beams remained far more tightly focused than expected. “When these laboratory results are scaled up to the astrophysical system, they confirm that beam–plasma instabilities are not strong enough to explain the absence of the gigaelectronvolt gamma rays from blazars,” Arrowsmith explains. Unless the pair beam is perfectly collimated, or composed of pairs with exactly equal energies, instabilities were actively suppressed in the plasma.

While the experiment suggests that an intergalactic magnetic field remains the best explanation for the lack of gamma rays, the mystery is far from solved. Gregori explains, “The early universe is believed to be extremely uniform – but magnetic fields require electric currents, which in turn need gradients and inhomogeneities in the primordial plasma.” As a result, confirming the existence of such a field could point to new physics beyond the Standard Model, which may have dominated in the early universe.

More information could come with opening of the Cherenkov Telescope Array Observatory. This will comprise ground-based gamma-ray detectors planned across facilities in Spain and Chile, which will vastly improve on the resolutions of current-generation detectors.

The research is described in PNAS.

The post Accelerator experiment sheds light on missing blazar radiation appeared first on Physics World.

  •  

Sympathetic cooling gives antihydrogen experiment a boost

Physicists working on the Antihydrogen Laser Physics Apparatus (ALPHA) experiment at CERN have trapped and accumulated 15,000 antihydrogen atoms in less than 7 h. This accumulation rate is more than 20 times the previous record. Large ensembles of antihydrogen could be used to search for tiny, unexpected differences between matter and antimatter – which if discovered could point to physics beyond the Standard Model.

According to the Standard Model every particle has an antimatter counterpart – or antiparticle. It also says that roughly equal amounts of matter and antimatter were created in the Big Bang. But, today there is much more matter than antimatter in the visible universe, and the reason for this “baryon asymmetry” is one of the most important mysteries of physics.

The Standard Model predicts the properties of antiparticles. An antiproton, for example, has the same mass as a proton and the opposite charge. The Standard Model also predicts how antiparticles interact with matter and antimatter. If physicists could find discrepancies between the measured and predicted properties of antimatter, it could help explain the baryon asymmetry and point to other new physics beyond the Standard Model.

Powerful probe

Just as a hydrogen atom comprises a proton bound to an electron, an antihydrogen antiatom comprises an antiproton bound to an antielectron (positron). Antihydrogen offers physicists several powerful ways to probe antimatter at a fundamental level. Trapped antiatoms can be released in freefall to determine if they respond to gravity in the same way as atoms. Spectroscopy can be used to make precise measurements of how the electromagnetic force binds the antiproton and positron in antihydrogen with the aim of finding differences compared to hydrogen.

So far, antihydrogen’s gravitational and electromagnetic properties appear to be identical to hydrogen. However, these experiments were done using small numbers of antiatoms, and having access to much larger ensembles would improve the precision of such measurements and could reveal tiny discrepancies. However, creating and storing antihydrogen is very difficult.

Today, antihydrogen can only be made in significant quantities at CERN in Switzerland. There, a beam of protons is fired at a solid target, creating antiprotons that are then cooled and stored using electromagnetic fields. Meanwhile, positrons are gathered from the decay of radioactive nuclei and cooled and stored using electromagnetic fields. These antiprotons and positrons are then combined in a special electromagnetic trap to create antihydrogen.

This process works best when the antiprotons and positrons have very low kinetic energies (temperatures) when combined. If the energy is too high, many antiatoms will be escape the trap. So, it is crucial that the positrons and antiprotons to be as cold as possible.

Sympathetic cooling

Recently, ALPHA physicists have used a technique called sympathetic cooling on positrons, and in a new paper they describe their success.  Sympathetic cooling has been used for several decades to cool atoms and ions. It originally involved mixing a hard-to-cool atomic species with atoms that are relatively easy to cool using lasers. Energy is transferred between the two species via the electromagnetic interaction, which chills the hard-to-cool atoms.

The ALPHA team used beryllium ions to sympathetically cool positrons to 10 K, which is five degrees colder than previously achieved using other techniques. These cold positrons boosted the efficiency of the creation and trapping of antihydrogen, allowing the team to accumulate 15,000 antihydrogen atoms in less than 7 h. This is more than a 20-fold improvement over their previous record of accumulating 2000 antiatoms in 24 h.

Science fiction

“These numbers would have been considered science fiction 10 years ago,” says ALPHA spokesperson Jeffrey Hangst, who is a Denmark’s Aarhus University.

Team member Maria Gonçalves, a PhD student at the UK’s Swansea University, says, “This result was the culmination of many years of hard work. The first successful attempt instantly improved the previous method by a factor of two, giving us 36 antihydrogen atoms”.

The effort was led by Niels Madsen of the UK’s Swansea University. He enthuses, “It’s more than a decade since I first realized that this was the way forward, so it’s incredibly gratifying to see the spectacular outcome that will lead to many new exciting measurements on antihydrogen”.

The cooling technique is described in Nature Communications.

The post Sympathetic cooling gives antihydrogen experiment a boost appeared first on Physics World.

  •  
❌