↩ Accueil

Vue lecture

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.

PLANCKS physics quiz – the solutions

Par : No Author

Question 1: 4D Sun

Imagine you have been transported to another universe with four spatial dimensions. What would the colour of the Sun be in this four-dimensional universe? You may assume that the surface temperature of the Sun is the same as in our universe and is approximately T = 6 × 103 K. [10 marks]

Boltzmann constant, kB = 1.38 × 10−23 J K−1

Speed of light, c = 3 × 108 m s−1

Solution

Black body radiation, spectral density: ε (ν) dν = ρ (ν) n (ν)

The photon energy, E = where h is Planck’s constant and ν is the photon frequency.

The density of states, ρ (ν) = n−1 where A is a constant independent of the frequency and the frequency term is the scaling of surface area of an n-dimensional sphere.

The Bose–Einstein distribution,

n(v)=1ehvkT1

where k is the Boltzmann constant and T is the temperature.

We let

x=hvkT

and get

ε(x)=xnex1

We do not need the constant of proportionality (which is not simple to calculate in 4D) to find the maximum of ε (x). Working out the constant just tells us how tall the peak is, but we are interested in where the peak is, not the total radiation.

dεdxnxn1ex1xnexex12

We set this equal to zero for the maximum of the distribution,

xn1exex12n1exx=0

This yields x = n (1 − ex) where

x=hvmaxkT

and we can relate

λmax=cvmax

and c being the speed of light.

This equation has the solution x = n +W (−ne−n) where W is the Lambert W function z = W (y) that solves zez = y (although there is a subtlety about which branch of the function). This is kind of useless to do anything with, though. One can numerically solve this equation using bisection/Newton–Raphson/iteration. Alternatively, one could notice that as the number of dimensions increases, e−x is small, so to leading approximation xn. One can do a little better iterating this, xnne−n which is what we will use. Note the second iteration yields

xnnennen

Number of dimensions, n Numerical solution Approximation
2 1.594 1.729
3 2.821 2.851
4 (the one we want) 3.921 3.927
5 4.965 4.966
6 5.985 5.985

Using the result above,

λmax=hckTxmax=6.63 ×1034·3×1081.38×1023·6×103·3.9=616 nm

616 nm is middle of the spectrum, so it will look white with a green-blue tint. Note, we have used T = 6000 K for the temperature here, as given in the question.

It would also be valid to look at ε (λ) dλ instead of ε (ν) .

Question 2: Heavy stuff

In a parallel universe, two point masses, each of 1 kg, start at rest a distance of 1 m apart. The only force on them is their mutual gravitational attraction, F = –Gm1m2/r2. If it takes 26 hours and 42 minutes for the two masses to meet in the middle, calculate the value of the gravitational constant G in this universe. [10 marks]

Solution

First we will set up the equations of motion for our system. We will set one mass to be at position −x and the other to be at x, so the masses are at a distance of 2x from each other. Starting from Newton’s law of gravity:

F=Gm22x2

we can then use Newton’s second law to rewrite the LHS,

mx¨=Gm24x2

which we can simplify to

x¨=Gm4x2

It is important that you get the right factor here depending on your choice for the particle coordinates at the start. Note there are other methods of getting this point, e.g. reduced mass.

We can now solve the second order ODE above. We will not show the whole process here but present the starting point and key results. We can write the acceleration in terms of the velocity. The initial velocity is zero and the initial position

xi=d2

So,

vdvdx=Gm4x20vvdv=Gm4xixdxx2

and once the integrals are solved we can rearrange for the velocity,

v=dxdt=Gm21x1xi

Now we can form an expression for the total time taken for the masses to meet in the middle,

T=2Gm0xidx1x1xi

There are quite a few steps involved in solving this integral, for these solutions, we shall make use of the following (but do attempt to solve it for yourselves in full).

01y1ydy=sin11=π2

Hence,

T=π22xi3Gm=π2d34Gm

We can now rearrange for G and substitute in the values given in the question, don’t forget to convert the time into seconds.

G=d34mπ2T2=6.67×1011 m3kg1s2

This is the generally accepted value for the gravitational constant of our universe as well.

Question 3: Just like clockwork

Consider a pendulum clock that is accurate on the Earth’s surface. Figure 1 shows a simplified view of this mechanism.

Simplified schematic of a pendulum clock mechanism
1 Tick tock Simplified schematic of a pendulum clock mechanism. When the pendulum swings one way (a), the escapement releases the gear attached to the hanging mass and allows it to fall. When the pendulum swings the other way (b) the escapement stops the gear attached to the mass moving so the mass stays in place. (Courtesy: Katherine Skipper/IOP Publishing)

A pendulum clock runs on the gravitational potential energy from a hanging mass (1). The other components of the clock mechanism regulate the speed at which the mass falls so that it releases its gravitational potential energy over the course of a day. This is achieved using a swinging pendulum of length l (2), whose period is given by

T=2πlg

where g is the acceleration due to gravity.

Each time the pendulum swings, it rocks a mechanism called an “escapement” (3). When the escapement moves, the gear attached to the mass (4) is released. The mass falls freely until the pendulum swings back and the escapement catches the gear again. The motion of the falling mass transfers energy to the escapement, which gives a “kick” to the pendulum that keeps it moving throughout the day.

Radius of the Earth, R = 6.3781 × 106 m

Period of one Earth day, τ0 = 8.64 × 104 s

How slow will the clock be over the course of a day if it is lifted to the hundredth floor of a skyscraper? Assume the height of each storey is 3 m. [4 marks]

Solution

We will write the period of oscillation of the pendulum at the surface of the Earth to be

T0=2πlg0.

At a height h above the surface of the Earth the period of oscillation will be

Th=2πlgh,

where g0 and gh are the acceleration due to gravity at the surface of the Earth and a height h above it respectively.

We can define τ0 to be the total duration of the day which is 8.64 × 104 seconds and equal to N complete oscillations of the pendulum at the surface. The lag is then τh which will equal N times the difference in one period of the two clocks, τh = NΔT, where ΔT = (ThT0). We can now take a ratio of the lag over the day and the total duration of the day:

τhτ0=NThT0NT0τh=τ0ThT0T0=τh=τ0ThT01

Then by substituting in the expressions we have for the period of a pendulum at the surface and height h we can write this in terms of the gravitational constant,

τh=τ0g0gh1

[Award 1 mark for finding the ratio of the lag over the day and the total period of the day.]

The acceleration due to gravity at the Earth’s surface is

g0=GMR2

where G is the universal gravitational constant, M is the mass of the Earth and R is the radius of the Earth. At an altitude h, it will be

gh=GMR+h2

[Award 1 mark for finding the expression for the acceleration due to gravity at height h.]

Substituting into our expression for the lag, we get:

τh=τ0R+h2R21=τ01+2hR+h2R21=τ0R2+2hR+h2R1=τ0R+hR1

This simplifies to an expression for the lag over a day. We can then substitute in the given values to find,

τh=τ0hR=8.64×104 s·300 m8.3781×106 m =4.064 s4 s

[Award 2 marks for completing the simplification of the ratio and finding the lag to be ≈ 4 s.]

Question 4: Quantum stick

Imagine an infinitely thin stick of length 1 m and mass 1 kg that is balanced on its end. Classically this is an unstable equilibrium, although the stick will stay there forever if it is perfectly balanced. However, in quantum mechanics there is no such thing as perfectly balanced due to the uncertainty principle – you cannot have the stick perfectly upright and not moving at the same time. One could argue that the quantum mechanical effects of the uncertainty principle on the system are overpowered by others, such as air molecules and photons hitting it or the thermal excitation of the stick. Therefore, to investigate we would need ideal conditions such as a dark vacuum, and cooling to a few milli­kelvins, so the stick is in its ground state.

Moment of inertia for a rod,

I=13ml2

where m is the mass and l is the length.

Uncertainty principle,

ΔxΔp2

There are several possible approximations and simplifications you could make in solving this problem, including:

sinθ ≈ θ for small θ

cosh1x=ln x+x21

and

sinh1x=ln x+x2+1

Calculate the maximum time it would take such a stick to fall over and hit the ground if it is placed in a state compatible with the uncertainty principle. Assume that you are on the Earth’s surface. [10 marks]

Hint: Consider the two possible initial conditions that arise from the uncertainty principle.

Solution

We can imagine this as an inverted pendulum, with gravity acting from the centre of mass l2 and at an angle θ from the unstable equilibrium point.

[Award 1 mark for a suitable diagram of the system.]

We must now find the equations of motion of the system. For this we can use Newton’s second law F=ma in its rotational form τ = Iα (torque = moment of inertia × angular acceleration). We have another equation for torque we can use as well

τ=r×F=rFsinθn^

where r is the distance from the pivot to the centre of mass l2 and F is the force, which in this case is gravity mg. We can then equate these giving

rFsinθ=Iα

Substituting in the given moment of inertia of the stick and that the angular acceleration

α=δ2θδt2=θ¨

We can cancel a few things and rearrange to get a differential equation of the form:

θ¨3g2lsinθ=0

we then can take the small angle approximation sin θ ≈ θ, resulting in

θ¨3g2lθ=0

[Award 2 marks for finding the equation of motion for the system and using the small angle approximation.]

Solve with ansatz of θ = Aeωt + Be−ωt, where we have chosen

ω2=3g2l

We can clearly see that this will satisfy the differential equation

θ˙=ωAeωtωBeωt and θ¨=ω2Aeωt+ω2Beωt

Now we can apply initial conditions to find A and B, by looking at the two cases from the uncertainty principle

ΔxΔp=ΔxmΔv2

Case 1: The stick is at an angle but not moving

At t = 0, θ = Δθ

θ = Δθ = A + B

At t = 0, θ˙=0

θ˙=0=ωAeω0ωBeω0 , A=B

This implies Δθ = 2A and we can then find

A=Δθ2=2Δx2l=Δxl

So we can now write

θ=Aeωteωt=Δvωeωteωt or θ=2Δvωlsinh ωt

Case 2: The stick is at upright but moving

At t = 0, θ = 0

This condition gives us A = −B.

At t = 0, θ¨=2vl

This initial condition has come from the relationship between the tangential velocity, Δv which equals the distance to the centre of mass from the pivot point, l2 and the angular velocity θ˙. Using the above initial condition gives us θ˙=2ωA where A=Δvωl

We can now write

θ=Aeωteωt=Δvωeωteωt or θ=2Δvωlsinh ωt

[Award 4 marks for finding the two expressions for θ by using the two cases of the uncertainty principle.]

Now there are a few ways we can finish off this problem, we shall look at three different ways. In each case when the stick has fallen on the ground θtf=π2.

Method 1

Take θ=2Δxlcosh ωt and θ=2Δvωlsinh ωt, use θtf=π2 then rearrange for tf in both cases. We have

tf=1ωcosh1πl4Δx and tf=1ωsinh1πωl4Δv

Look at the expression for cosh−1 x and sinh−1 x given in the question. They are almost identical, we can then approximate the two arguments to each other and we find,

Δx=Δvω

we can then substitute in the uncertainty principle ΔxΔp=2 as Δv=2mδx and then write an expression of Δx=2mω, which we can put back into our arccosh expression (or do it for Δv and put into arcsinh).

tf=1ωcosh1πl4Δx

where Δx=2mω and ω=3g2l.

Method 2

In this next method, when you get to the inverse hyperbolic functions, you can take an expansion of their natural log forms in the tending to infinity limit. To first order both functions give ln 2x, we can then equate the arguments and find Δx or Δv in terms of the other and use the uncertainty principle. This would give the time taken as,

tf=1ωlnπl2Δx

where Δx=2mω and ω=3g2l.

Method 3

Rather than using hyperbolic functions, you could do something like above and do an expansion of the exponentials in the two expressions for tf or we could make life even easier and do the following.

Disregard the e−ωt terms as they will be much smaller than the eωt terms. Equate the two expressions for θtf=π2 and then take the natural logs, once again arriving at an expression of

tf=1ωlnπl2Δx

where Δx=2mω and ω=3g2l.

This method efficiently sets B = 0 when applying the initial conditions.

[Award 2 marks for reaching an expression for t using one of the methods above or a suitable alternative that gives the correct units for time.]

Then, by using one of the expressions above for time, substitute in the values and find that t = 10.58 seconds.

[Award 1 mark for finding the correct time value of t = 10.58 seconds.]

  • If you’re a student who wants to sign up for the 2025 edition of PLANCKS UK and Ireland, entries are now open at plancks.uk

The post PLANCKS physics quiz – the solutions appeared first on Physics World.

Orange commence à démanteler son réseau ADSL en France

C’est le début de la fin pour l’ADSL en France. Orange a commencé les travaux visant à mettre au rebut ce réseau historique : pas moins de 162 communes et 210 000 locaux vont être débranchés à partir aujourd’hui. L’idée est évidemment de mettre l’accent sur la fibre optique, de plus en plus implantée. 829 communes seront déconnectées en janvier 2026, puis 2 150 au début 2027. L’objectif est d’abandonner totalement l’ADSL d’ici 2030. La liste des villes concernées par cette première vague est disponible sur le site d’Orange.

Image Orange

L’abandon de l’ADSL avait été annoncé par Orange en 2019 face à la montée en puissance de la fibre. 9 Français sur 10 sont raccordables tandis que quasiment 3/4 des foyers y sont déjà connectés. Si les habitants des communes concernées ont logiquement été préparés à cette migration forcée, l’opérateur a travaillé avec les maires pour identifier les lignes ADSL restantes et assurer une transition sans accrocs. « Personne ne sera laissé sur la route », a déclaré le patron d’Orange France auprès du Figaro.

Évidemment, quelques-uns ont tout de même été laissés sur le carreau. Orange estime que moins de 7 000 accès sur les 210 000 foyers débranchés n’avaient pas pris les mesures nécessaires. L’opérateur nuance en affirmant qu’il s’agit pour la plupart de locaux inactifs ou de gens en pleine migration. Il n’était plus possible de prendre une ligne ADSL depuis un an dans les villes concernées, et la fermeture du réseau cuivre ne peut pas être enclenchée dans une zone où la fibre n’a pas été déployée complètement.

Orange a tout intérêt à initier ce chantier. Premièrement, les abonnements aux offres ADSL sont en chutes libres. « Nous avons perdu 20 % d’abonnés sur le cuivre en un an. C’est un réseau de 1 million de kilomètres qui s’endort », a déclaré la directrice générale d’Orange. Deuxièmement, la fibre a l’avantage d’être plus économe tout en étant moins sensible aux perturbations électroniques. Troisièmement, le cuivre peut être recyclé et revendu à bon prix : Orange espère réussir à compenser le coût des travaux à la revente. L’intérêt écologique de l’opération est également évident.

Ce plan de démantèlement va continuer sur les prochaines années, Orange s’occupant de démonter les poteaux, câbles et autres armoires techniques devenus obsolètes. L’opérateur va devoir travailler minutieusement pour éviter les plaintes des retardataires. Il compte bien sur ses concurrents pour faire la retape de la fibre, SFR et consorts lui payant une commission pour l’utilisation de son réseau cuivre. « Nous avons besoin des élus locaux, l’État aussi a son rôle à jouer », ajoute la directrice générale d’Orange.

Chromium Embedded Framework "CEF" Seeing Progress On Wayland Support

One of the important pieces of open-source software still working toward proper Wayland support is the Chromium Embedded Framework "CEF" that in turn is depended upon by software like Steam, OBS Studio, Spotify, and many other software packages for having an in-app browser-type experience. The good news is there has been some recent progress on native Wayland support for CEF...

Le calendrier des sorties jeux vidéo du mois de février 2025

Par : Goufixx

Ce mois de février propose plusieurs sorties intéressantes avec des arrivées très attendues par les joueurs. On y retrouvera le retour de l’une des franchises phares de Capcom, mais également le spin-off version pirate d’une série bien appréciée par ses fans.

Février marque le véritable début d’année 2025 en ce qui concerne les sorties vidéoludiques : si le nombre total de nouveautés peut paraître assez faible, la qualité devrait être au rendez-vous. Tout d’abord, le mois commencera de façon très forte avec la sortie de deux titres très attendus, à savoir Kingdom Come Deliverance 2 et Civilization VII sur consoles et PC.

En revanche, la fin de mois sera marquée par l’arrivée de deux productions japonaises très attendues par les joueurs : le plus que prometteur Monster Hunter Wilds et l’imprévisible, mais totalement déjanté, Like a Dragon: Pirate Yakuza in Hawaii.

Concernant les autres sorties à surveiller de près, la compilation Yu-Gi-Oh ! Early Days Collection sortira sur Nintendo Switch et PC et s’adressera davantage aux premiers joueurs de la série. Les fans de la belle aventurière Lara Croft seront ravis de la retrouver dans Tomb Raider IV-V-VI Remastered tandis que l’exclusivité Xbox et PC de ce nouveau mois sera Avowed, un titre développé par la talentueuse équipe de chez Obsidian Entertainment.

Notre calendrier complet pour février 2025 se trouve ci-dessous :

DateJeuPlateforme(s)
04/02/2025Kingdom Come Deliverance 2PS5 - Xbox Series X|S - PC
05/02/2025Rift of the NecroDancerPC
06/02/2025Candy Crush SolitaireiOS - Android
06/02/2025Momodora: Moonlit FarewellPS5 - Xbox Series X|S - Nintendo Switch
06/02/2025SwornPC
07/02/2025Sugoro Quest: Dice HeroesPS5 - Xbox Series X|S - PS4 - Xbox One - Nintendo Switch
11/02/2025Civilization VIIPS5 - Xbox Series X|S - PS4 - Xbox One - Nintendo Switch - PC
12/02/2025Legacy: Steel & SorceryPC
13/02/2025Phantom Breaker: Battle Grounds UltimatePS5 - Xbox Series X|S - PS4 - Xbox One - Nintendo Switch - PC
13/02/2025Urban Myth Dissolution CenterPS5 - Nintendo Switch - PC
14/02/2025Afterlove EPPS5 - Xbox Series X|S - Nintendo Switch - PC
14/02/2025Date Everything !PS5 - Xbox Series X|S - Nintendo Switch - PC
14/02/2025Tomb Raider IV-V-VI RemasteredPS5 - Xbox Series X|S - PS4 - Xbox One - Nintendo Switch - PC
16/02/2025Berserk BoyPS5
18/02/2025AvowedXbox Series X|S - PC
18/02/2025Lost Records: Bloom & RagePS5 - Xbox Series X|S - PC
20/02/2025Ninja IssenNintendo Switch
20/02/2025Stories from Sol: The Gun-DogPS5 - PS4 - Nintendo Switch - PC
20/02/2025The King of Fighters XIII Global MatchPC
21/02/2025Like a Dragon: Pirate Yakuza in HawaiiPS5 - Xbox Series X|S - PS4 - Xbox One - Nintendo Switch - PC
21/02/2025RPG Maker WITHPS5 - PS4
25/02/2025BlasphemousiOS - Android
25/02/2025Ninja Five-OPS5 - PS4 - Nintendo Switch - PC
27/02/2025DanMachi – Fullland of Water and LightNintendo Switch - PC
27/02/2025Lara Croft and the Guardian of LightiOS - Android
27/02/2025Yu-Gi-Oh ! Early Days CollectionNintendo Switch - PC
28/02/2025Monster Hunter WildsPS5 - Xbox Series X|S - PC
28/02/2025Omega 6: The Triangle StarsNintendo Switch - PC
28/02/2025PGA Tour 2K25PS5 - Xbox Series X|S - PC

Alors, sur quels titres allez-vous craquer ?

Cet article Le calendrier des sorties jeux vidéo du mois de février 2025 est apparu en premier sur JVFrance.

❌