↩ Accueil

Vue lecture

Shengxi Huang: how defects can boost 2D materials as single-photon emitters

Photo of researchers in a lab at Rice University.
Hidden depths Shengxi Huang (left) with members of her lab at Rice University in the US, where she studies 2D materials as single-photon sources. (Courtesy: Jeff Fitlow)

Everyday life is three dimensional, with even a sheet of paper having a finite thickness. Shengxi Huang from Rice University in the US, however, is attracted by 2D materials, which are usually just one atomic layer thick. Graphene is perhaps the most famous example — a single layer of carbon atoms arranged in a hexagonal lattice. But since it was first created in 2004, all sorts of other 2D materials, notably boron nitride, have been created.

An electrical engineer by training, Huang did a PhD at the Massachusetts Institute of Technology and postdoctoral research at Stanford University before spending five years as an assistant professor at the Pennsylvania State University. Huang has been at Rice since 2022, where she is now an associate professor in the Department of Electrical and Computer Engineering, the Department of Material Science and NanoEngineering, and the Department of Bioengineering.

Her group at Rice currently has 12 people, including eight graduate students and four postdocs. Some are physicists, some are engineers, while others have backgrounds in material science or chemistry. But they all share an interest in understanding the optical and electronic properties of quantum materials and seeing how they can be used, for example, as biochemical sensors. Lab equipment from Picoquant is vital in helping in that quest, as Huang explains in an interview with Physics World.

Why are you fascinated by 2D materials?

I’m an electrical engineer by training, which is a very broad field. Some electrical engineers focus on things like communication and computing, but others, like myself, are more interested in how we can use fundamental physics to build useful devices, such as semiconductor chips. I’m particularly interested in using 2D materials for optoelectronic devices and as single-photon emitters.

What kinds of 2D materials do you study?

The materials I am particularly interested in are transition metal dichalcogenides, which consist of a layer of transition-metal atoms sandwiched between two layers of chalcogen atoms – sulphur, selenium or tellurium. One of the most common examples is molybdenum disulphide, which in its monolayer form has a layer of sulphur on either side of a layer of molybdenum. In multi-layer molybdenum disulphide, the van der Waals forces between the tri-layers are relatively weak, meaning that the material is widely used as a lubricant – just like graphite, which is a many-layer version of graphene.

Why do you find transition metal dichalcogenides interesting?

Transition metal dichalcogenides have some very useful optoelectronic properties. In particular, they emit light whenever the electron and hole that make up an “exciton” recombine. Now because these dichalcogenides are so thin, most of the light they emit can be used. In a 3D material, in contrast, most light is generated deep in the bulk of the material and doesn’t penetrate beyond the surface. Such 2D materials are therefore very efficient and, what’s more, can be easily integrated onto chip-based devices such as waveguides and cavities.

Transition metal dichalcogenide materials also have promising electronic applications, particularly as the active material in transistors. Over the years, we’ve seen silicon-based transistors get smaller and smaller as we’ve followed Moore’s law, but we’re rapidly reaching a limit where we can’t shrink them any further, partly because the electrons in very thin layers of silicon move so slowly. In 2D transition metal dichalcogenides, in contrast, the electron mobility can actually be higher than in silicon of the same thickness, making them a promising material for future transistor applications.

What can such sources of single photons be used for?

Single photons are useful for quantum communication and quantum cryptography. Carrying information as zero and one, they basically function as a qubit, providing a very secure communication channel. Single photons are also interesting for quantum sensing and even quantum computing. But it’s vital that you have a highly pure source of photons. You don’t want them mixed up with “classical photons”, which — like those from the Sun — are emitted in bunches as otherwise the tasks you’re trying to perform cannot be completed.

What approaches are you taking to improve 2D materials as single-photon emitters?

What we do is introduce atomic defects into a 2D material to give it optical properties that are different to what you’d get in the bulk. There are several ways of doing this. One is to irradiate a sample with ions or electrons, which can bombard individual atoms out to generate “vacancy defects”. Another option is to use plasmas, whereby atoms in the sample get replaced by atoms from the plasma.

So how do you study the samples?

We can probe defect emission using a technique called photoluminescence, which basically involves shining a laser beam onto the material. The laser excites electrons from the ground state to an excited state, prompting them to emit light. As the laser beam is about 500-1000 nm in diameter, we can see single photon emission from an individual defect if the defect density is suitable.

Photo of researchers in a lab at Rice University
Beyond the surface Shengxi Huang (second right) uses equipment from PicoQuant to probe 2D materials. (Courtesy: Jeff Fitlow)

What sort of experiments do you do in your lab?

We start by engineering our materials at the atomic level to introduce the correct type of defect. We also try to strain the material, which can increase how many single photons are emitted at a time. Once we’ve confirmed we’ve got the correct defects in the correct location, we check the material is emitting single photons by carrying out optical measurements, such as photoluminescence. Finally, we characterize the purity of our single photons – ideally, they shouldn’t be mixed up with classical photons but in reality, you never have a 100% pure source. As single photons are emitted one at a time, they have different statistical characteristics to classical light. We also check the brightness and lifetime of the source, the efficiency, how stable it is, and if the photons are polarized. In fact, we have a feedback loop: what improvements can we do at the atomic level to get the properties we’re after?

Is it difficult adding defects to a sample?

It’s pretty challenging. You want to add just one defect to an area that might be just one micron square so you have to control the atomic structure very finely. It’s made harder because 2D materials are atomically thin and very fragile. So if you don’t do the engineering correctly, you may accidentally introduce other types of defects that you don’t want, which will alter the defects’ emission.

What techniques do you use to confirm the defects are in the right place?

Because the defect concentration is so low, we cannot use methods that are typically used to characterise materials, such as X-ray photo-emission spectroscopy or scanning electron microscopy. Instead, the best and most practical way is to see if the defects generate the correct type of optical emission predicted by theory. But even that is challenging because our calculations, which we work on with computational groups, might not be completely accurate.

How do your PicoQuant instruments help in that regard?

We have two main pieces of equipment – a MicroTime 100 photoluminescence microscope and a FluoTime 300 spectrometer. These have been customized to form a Hanbury Brown Twiss interferometer, which measures the purity of a single photon source. We also use the microscope and spectrometer to characterise photoluminescence spectrum and lifetime. Essentially, if the material emits light, we can then work out how long it takes before the emission dies down.

Did you buy the equipment off-the-shelf?

It’s more of a customised instrument with different components – lasers, microscopes, detectors and so on — connected together so we can do multiple types of measurement. I put in a request to Picoquant, who discussed my requirements with me to work out how to meet my needs. The equipment has been very important for our studies as we can carry out high-throughput measurements over and over again. We’ve tailored it for our own research purposes basically.

So how good are your samples?

The best single-photon source that we currently work with is boron nitride, which has a single-photon purity of 98.5% at room temperature. In other words, for every 200 photons only three are classical. With transition-metal dichalcogenides, we get a purity of 98.3% at cryogenic temperatures.

What are your next steps?

There’s still lots to explore in terms of making better single-photon emitters and learning how to control them at different wavelengths. We also want to see if these materials can be used as high-quality quantum sensors. In some cases, if we have the right types of atomic defects, we get a high-quality source of single photons, which we can then entangle with their spin. The emitters can therefore monitor the local magnetic environment with better performance than is possible with classical sensing methods.

The post Shengxi Huang: how defects can boost 2D materials as single-photon emitters appeared first on Physics World.

  •  

Axion quasiparticle appears in a topological antiferromagnet

Physicists have observed axion quasiparticles for the first time in a two-dimensional quantum material. As well as having applications in materials science, the discovery could aid the search for fundamental axions, which are a promising (but so far hypothetical) candidate for the unseen dark matter pervading our universe.

Theorists first proposed axions in the 1970s as a way of solving a puzzle involving the strong nuclear force and charge-parity (CP) symmetry. In systems that obey this symmetry, the laws of physics are the same for a particle and the spatial mirror image of its oppositely charged antiparticle. Weak interactions are known to violate CP symmetry, and the theory of quantum chromodynamics (QCD) allows strong interactions to do so, too. However, no-one has ever seen evidence of this happening, and the so-called “strong CP problem” remains unresolved.

More recently, the axion has attracted attention as a potential constituent of dark matter – the mysterious substance that appears to make up more than 85% of matter in the universe. Axions are an attractive dark matter candidate because while they do have mass, and theory predicts that the Big Bang should have generated them in large numbers, they are much less massive than electrons, and they carry no charge. This combination means that axions interact only very weakly with matter and electromagnetic radiation – exactly the behaviour we expect to see from dark matter.

Despite many searches, though, axions have never been detected directly. Now, however, a team of physicists led by Jianxiang Qiu of Harvard University has proposed a new detection strategy based on quasiparticles that are axions’ condensed-matter analogue. According to Qiu and colleagues, these quasiparticle axions, as they are known, could serve as axion “simulators”, and might offer a route to detecting dark matter in quantum materials.

Topological antiferromagnet

To detect axion quasiparticles, the Harvard team constructed gated electronic devices made from several two-dimensional layers of manganese bismuth telluride (MnBi2Te4). This material is a rare example of a topological antiferromagnet – that is, a material that is insulating in its bulk while conducting electricity on its surface, and that has magnetic moments that point in opposite directions. These properties allow quasiparticles known as magnons (collective oscillations of spin magnetic moments) to appear in and travel through the MnBi2Te4. Two types of magnon mode are possible: one in which the spins oscillate in sync; and another in which they are out of phase.

Qiu and colleagues applied a static magnetic field across the plane of their MnBi2Te4 sheets and bombarded the devices with sub-picosecond light pulses from a laser. This technique, known as ultrafast pump-probe spectroscopy, allowed them to observe the 44 GHz coherent oscillation of the so-called condensed-matter field. This field is the CP-violating term in QCD, and it is proportional to a material’s magnetoelectric coupling constant. “This is uniquely enabled by the out-of-phase magnon in this topological material,” explains Qiu. “Such coherent oscillations are the smoking-gun evidence for the axion quasiparticle and it is the combination of topology and magnetism in MnBi2Te4 that gives rise to it.”

A laboratory for axion studies

Now that they have detected axion quasiparticles, Qiu and colleagues say their next step will be to do experiments that involve hybridizing them with particles such as photons. Such experiments would create a new type of “axion-polariton” that would couple to a magnetic field in a unique way – something that could be useful for applications in ultrafast antiferromagnetic spintronics, in which spin-polarized currents can be controlled with an electric field.

The axion quasiparticle could also be used to build an axion dark matter detector. According to the team’s estimates, the detection frequency for the quasiparticle is in the milli-electronvolt (meV) range. While several theories for the axion predict that it could have a mass in this range, most existing laboratory detectors and astrophysical observations search for masses outside this window.

“The main technical barrier to building such a detector would be grow high-quality large crystals of MnBi2Te4 to maximize sensitivity,” Qiu tells Physics World. “In contrast to other high-energy experiments, such a detector would not require expensive accelerators or giant magnets, but it will require extensive materials engineering.”

The research is described in Nature.

The post Axion quasiparticle appears in a topological antiferromagnet appeared first on Physics World.

  •  

Two-dimensional metals make their debut

Researchers from the Institute of Physics of the Chinese Academy of Sciences have produced the first two-dimensional (2D) sheets of metal. At just angstroms thick, these metal sheets could be an ideal system for studying the fundamental physics of the quantum Hall effect, 2D superfluidity and superconductivity, topological phase transitions and other phenomena that feature tight quantum confinement. They might also be used to make novel electronic devices such as ultrathin low-power transistors, high-frequency devices and transparent displays.

Since the discovery of graphene – a 2D sheet of carbon just one atom thick – in 2004, hundreds of other 2D materials have been fabricated and studied. In most of these, layers of covalently-bonded atoms are separated by gaps. The presence of these gaps mean that neighbouring layers are held together only by weak van der Waals (vdW) interactions, making it relatively easy to “shave off” single layers to make 2D sheets.

Making atomically thin metals would expand this class of technologically important structures. However, because each atom in a metal is strongly bonded to surrounding atoms in all directions, thinning metal sheets to this degree has proved difficult. Indeed, many researchers thought it might be impossible.

Melting and squeezing pure metals

The technique developed by Guangyu Zhang, Luojun Du and colleagues involves heating powders of pure metals between two monolayer-MoS2/sapphire vdW anvils. The team used MoS2/sapphire because both materials are atomically flat and lack dangling bonds that could react with the metals. They also have high Young’s moduli, of 430 GPa and 300 GPa respectively, meaning they can withstand extremely high pressures.

Once the metal powders melted into a droplet, the researchers applied a pressure of 200 MPa. They then continued this “vdW squeezing” until the opposite sides of the anvils cooled to room temperature and 2D sheets of metal formed.

The team produced five atomically thin 2D metals using this technique. The thinnest, at around 5.8 Å, was tin, followed by bismuth (~6.3 Å), lead (~7.5 Å), indium (~8.4 Å) and gallium (~9.2 Å).

“Arduous explorations”

Zhang, Du and colleagues started this project around 10 years ago after they decided it would be interesting to work on 2D materials other than graphene and its layered vdW cousins. At first, they had little success. “Since 2015, we tried out a host of techniques, including using a hammer to thin a metal foil – a technique that we borrowed from gold foil production processes – all to no avail,” Du recalls. “We were not even able to make micron-thick foils using these techniques.”

After 10 years of what Du calls “arduous explorations”, the team finally moved a crucial step forward by developing the vdW squeezing method.

Writing in Nature, the researchers say that the five 2D metals they’ve realized so far are just the “tip of the iceberg” for their method. They now intend to increase this number. “In terms of novel properties, there is still a knowledge gap in the emerging electrical, optical, magnetic properties of 2D metals, so it would be nice to see how these materials behave physically as compared to their bulk counterparts thanks to 2D confinement effects,” says Zhang. “We would also like to investigate to what extent such 2D metals could be used for specific applications in various technological fields.”

The post Two-dimensional metals make their debut appeared first on Physics World.

  •