↩ Accueil

Vue lecture

Highest-resolution images ever taken of a single atom reveal new kind of vibrations

Researchers in the US have directly imaged a class of extremely low-energy atomic vibrations called moiré phasons for the first time. In doing so, they proved that these vibrations are not just a theoretical concept, but are in fact the main way that atoms vibrate in certain twisted two-dimensional materials. Such vibrations may play a critical role in heat and charge transport and how quantum phases behave in these materials.

“Phasons had only been predicted by theory until now, and no one had ever directly observed them, or even thought that this was possible,” explains Yichao Zhang of the University of Maryland, who co-led the effort with Pinshane Huang of the University of Illinois at Urbana-Champaign. “Our work opens up an entirely new way of understanding lattice vibrations in 2D quantum materials.”

A second class of moiré phonons

When two sheets of a 2D materials are placed on top of each other and slightly twisted, their atoms form a moiré pattern, or superlattice. This superlattice contains quasi-periodic regions of rotationally aligned regions (denoted AA or AB) separated by a network of stacking faults called solitons.

Materials of this type are also known to possess distinctive vibrational modes known as moiré phonons, which arise from vibrations of the material’s crystal lattice. These modes vary with the twist angle between layers and can change the physical properties of the materials.

In addition to moiré phonons, two-dimensional moiré materials are also predicted to host a second class of vibrational mode known as phasons. However, these phasons had never been directly observed experimentally until now.

Imaging phasons at the picometre scale

In the new work, which is published in Science, the researchers used a powerful microscopy technique called electron ptychography that enabled them to image samples with spatial resolutions as fine as 15 picometres (1 pm = 10-12 m). At this level of precision, explains Zhang, subtle changes in thermally driven atomic vibrations can be detected by analysing the shape and size of individual atoms. “This meant we could map how atoms vibrate across different stacking regions of the moiré superlattice,” she says. “What we found was striking: the vibrations weren’t uniform – atoms showed larger amplitudes in AA-stacked regions and highly anisotropic behaviour at soliton boundaries. These patterns align precisely with theoretical predictions for moiré phasons.”

Coloured dots showing thermal vibrations in a single atom
Good vibrations: The experiment measured thermal vibrations in a single atom. (Courtesy: Yichao Zhang et al.)

Zhang has been studying phonons using electron microscopy for years, but limitations on imaging resolutions had largely restricted her previous studies to nanometre (10-9 m) scales. She recently realized that electron ptychography would resolve atomic vibrations with much higher precision, and therefore detect moiré phasons varying across picometre scales.

She and her colleagues chose to study twisted 2D materials because they can support many exotic electronic phenomena, including superconductivity and correlated insulated states. However, the role of lattice dynamics, including the behaviour of phasons in these structures, remains poorly understood. “The problem,” she explains, “is that phasons are both extremely low in energy and spatially non-uniform, making them undetectable by most experimental techniques. To overcome this, we had to push electron ptychography to its limits and validate our observations through careful modelling and simulations.”

This work opens new possibilities for understanding (and eventually controlling) how vibrations behave in complex 2D systems, she tells Physics World. “Phasons can affect how heat flows, how electrons move, and even how new phases of matter emerge. If we can harness these vibrations, we could design materials with programmable thermal and electronic properties, which would be important for future low-power electronics, quantum computing and nanoscale sensors.”

More broadly, electron ptychography provides a powerful new tool for exploring lattice dynamics in a wide range of advanced materials. The team is now using electron ptychography to study how defects, strain and interfaces affect phason behaviour. These imperfections are common in many real-world materials and devices and can cause their performance to deteriorate significantly. “Ultimately, we hope to capture how phasons respond to external stimuli, like how they evolve with change in temperature or applied fields,” Zhang reveals. “That could give us an even deeper understanding of how they interact with electrons, excitons or other collective excitations in quantum materials.”

The post Highest-resolution images ever taken of a single atom reveal new kind of vibrations appeared first on Physics World.

  •  

Amorphous carbon membrane creates precision proton beams for cancer therapy

A new method for generating high-energy proton beams could one day improve the precision of proton therapy for treating cancer. Developed by an international research collaboration headed up at the National University of Singapore, the technique involves accelerating H2+ ions and then using a novel two-dimensional carbon membrane to split the high-energy ion beam into beams of protons.

One obstacle when accelerating large numbers of protons together is that they all carry the same positive charge and thus naturally repel each other. This so-called space–charge effect makes it difficult to keep the beam tight and focused.

“By accelerating H₂⁺ ions instead of single protons, the particles don’t repel each other as strongly,” says project leader Jiong Lu. “This enables delivery of proton beam currents up to an order of magnitude higher than those from existing cyclotrons.”

Lu explains that a high-current proton beam can deliver more protons in a shorter time, making proton treatments quicker, more precise and targeting tumours more effectively. Such a proton beam could also be employed in FLASH therapy, an emerging treatment that delivers therapeutic radiation at ultrahigh dose rates to reduce normal tissue toxicity while preserving anti-tumour activity.

Industry-compatible fabrication

The key to this technique lies in the choice of an optimal membrane with which to split the H₂⁺ ions. For this task, Lu and colleagues developed a new material – ultraclean monolayer amorphous carbon (UC-MAC). MAC is similar in structure to graphene, but instead of an ordered honeycomb structure of hexagonal rings, it contains a disordered mix of five-, six-, seven and eight-membered carbon rings. This disorder creates angstrom-scale pores in the films, which can be used to split the H₂⁺ ions into protons as they pass through.

Ultraclean monolayer amorphous carbon
Pentagons, hexagons, heptagons, octagons Illustration of disorder-to-disorder synthesis (left); scanning transmission electron microscopy image of UC-MAC (right). (Courtesy: National University of Singapore)

Scaling the manufacture of ultrathin MAC films, however, has previously proved challenging, with no industrial synthesis method available. To address this problem, the researchers proposed a new fabrication approach in which the emergence of long-range order in the material is suppressed, not by the conventional approach of low-temperature growth, but by a novel disorder-to-disorder (DTD) strategy.

DTD synthesis uses plasma-enhanced chemical vapor deposition (CVD) to create a MAC film on a copper substrate containing numerous nanoscale crystalline grains. This disordered substrate induces high levels of randomized nucleation in the carbon layer and disrupts long-range order. The approach enabled wafer-scale (8-inch) production of UC-MAC films within just 3 s – an order of magnitude faster than conventional CVD methods.

Disorder creates precision

To assess the ability of UC-MAC to split H₂⁺ ions into protons, the researchers generated a high-energy H2+ nanobeam and focused it onto a freestanding two-dimensional UC-MAC crystal. This resulted in the ion beam splitting to create high-precision proton beams. For comparison they repeated the experiment (with beam current stabilities controlled within 10%) using single-crystal graphene, non-clean MAC with metal impurities and commercial carbon thin films (8 nm).

Measuring double-proton events – in which two proton signals are detected from a single H2+ ion splitting – as an indicator for proton scattering revealed that the UC-MAC membrane produced far fewer unwanted scattered protons than the other films. Ion splitting using UC-MAC resulted in about 47 double-proton events over a 20 s collection time, while the graphene film exhibited roughly twice this number and the non-clean MAC slightly more. The carbon thin film generated around 46 times more scattering events.

The researchers point out that the reduced double-proton events in UC-MAC “demonstrate its superior ability to minimize proton scattering compared with commercial materials”. They note that as well as UC-MAC creating a superior quality proton beam, the technique provides control over the splitting rate, with yields ranging from 88.8 to 296.0 proton events per second per detector.

“Using UC-MAC to split H₂⁺ produces a highly sharpened, high-energy proton beam with minimal scattering and high spatial precision,” says Lu. “This allows more precise targeting in proton therapy – particularly for tumours in delicate or critical organs.”

“Building on our achievement of producing proton beams with greatly reduced scattering, our team is now developing single molecule ion reaction platforms based on two-dimensional amorphous materials using high-energy ion nanobeam systems,” he tells Physics World. “Our goal is to make proton beams for cancer therapy even more precise, more affordable and easier to use in clinical settings.”

The study is reported in Nature Nanotechnology.

The post Amorphous carbon membrane creates precision proton beams for cancer therapy appeared first on Physics World.

  •