Dark matter could be accumulating inside planets close to the galactic centre, potentially even forming black holes that might consume the afflicted planets from the inside-out, new research has predicted.
According to the standard model of cosmology, all galaxies including the Milky Way sit inside huge haloes of dark matter, with the greatest density at the centre. This dark matter primarily interacts only through gravity, although some popular models such as weakly interacting massive particles (WIMPS) do imply that dark-matter particles may occasionally scatter off normal matter.
This has led PhD student Mehrdad Phoroutan Mehr and Tara Fetherolf of the University of California, Riverside, to make an extraordinary proposal: that dark matter could elastically scatter off molecules inside planets, lose energy and become trapped inside those planets, and then grow so dense that they collapse to form a black hole. In some cases, a black hole could be produced in just ten months, according to Mehr and Fetherolf’s calculations, reported in Physical Review D.
Even more remarkable is that while many planets would be consumed by their parasitic black hole, it is feasible that some planets could actually survive with a black hole inside them, while in others the black hole might evaporate, Mehr tells Physics World.
“Whether a black hole inside a planet survives or not depends on how massive it is when it first forms,” he says.
This leads to a trade-off between how quickly the black hole can grow and how soon the black hole can evaporate via Hawking radiation – the quantum effect that sees a black hole’s mass radiated away as energy.
The mass of a dark-matter particle remains unknown, but the less massive it is, and the more massive a planet is, then the greater the chance a planet has of capturing dark matter, and the more massive a black hole it can form. If the black hole starts out relatively massive, then the planet is in big trouble, but if it starts out very small then it can evaporate before it becomes dangerous. Of course, if it evaporates, another black hole could replace it in the future.
“Interestingly,” adds Mehr, “There is also a special in-between mass where these two effects balance each other out. In that case, the black hole neither grows nor evaporates – it could remain stable inside the planet for a long time.”
Keeping planets warm
It’s not the first time that dark matter has been postulated to accumulate inside planets. In 2011 Dan Hooper and Jason Steffen of Fermilab proposed that dark matter could become trapped inside planets and that the energy released through dark-matter particles annihilating could keep a planet outside the habitable zone warm enough for liquid water to exist on its surface.
Mehr and Fetherolf’s new hypothesis “is worth looking into more carefully”, says Hooper.
That said, Hooper cautions that the ability of dark matter to accumulate inside a planet and form a black hole should not be a general expectation for all models of dark matter. Rather, “it seems to me that there could be a small window of dark-matter models where such particles could be captured in stars at a rate that is high enough to lead to black hole formation,” he says.
Currently there remains a large parameter space for the possible properties for dark matter. Experiments and observations continue to chip away at this parameter space, but there remain a very wide range of possibilities. The ability of dark matter to self-annihilate is just one of those properties – not all models of dark matter allow for this.
If dark-matter particles do annihilate at a sufficiently high rate when they come into contact, then it is unlikely that the mass of dark matter inside a planet would ever grow large enough to form a black hole. But if they don’t self-annihilate, or at least not at an appreciable rate, then a black hole formed of dark matter could still keep a planet warm with its Hawking radiation.
Searching for planets with black holes inside
The temperature anomaly that this would create could provide a means of detecting planets with black holes inside them. It would be challenging – the planets that we expect to contain the most dark matter would be near the centre of the galaxy 26,000 light years away, where the dark-matter concentration in the halo is densest.
Even if the James Webb Space Telescope (JWST) could detect anomalous thermal radiation from such a distant planet, Mehr says that it would not necessarily be a smoking gun.
“If JWST were to observe that a planet is hotter than expected, there could be many possible explanations, we would not immediately attribute this to dark matter or a black hole,” says Mehr. “Rather, our point is that if detailed studies reveal temperatures that cannot be explained by ordinary processes, then dark matter could be considered as one possible – though still controversial – explanation.”
Another problem is that black holes cannot be distinguished from planets purely through their gravity. A Jupiter-mass planet has the same gravitational pull as a Jupiter-mass black hole that has just eaten a Jupiter-mass planet. This means that planetary detection methods that rely on gravity, from radial velocity Doppler shift measurements to astrometry and gravitational microlensing events, could not tell a planet and a black hole apart.
The planets in our own Solar System are also unlikely to contain much dark matter, says Mehr. “We assume that the dark matter density primarily depends on the distance from the centre of the galaxy,” he explains.
Where we are, the density of dark matter is too low for the planets to capture much of it, since the dark-matter halo is concentrated in the galactic centre. Therefore, we needn’t worry about Jupiter or Saturn, or even Earth, turning into a black hole.
The clash between dark matter and modified Newtonian dynamics (MOND) can get a little heated at times. On one side is the vast majority of astronomers who vigorously support the concept of dark matter and its foundational place in cosmology’s standard model. On the other side is the minority – a group of rebels convinced that tweaking the laws of gravity rather than introducing a new particle is the answer to explaining the composition of our universe.
Both sides argue passionately and persuasively, pointing out evidence that supports their view while discrediting the other side. Often it seems to come down to a matter of perspective – both sides use the same results as evidence for their cause. For the rest of us, how can we tell who is correct?
As long as we still haven’t identified what dark matter is made of, there will remain some ambiguity, leaving a door ajar for MOND. However, it’s a door that dark-matter researchers hope will be slammed shut in the not-too-distant future.
Crunch time for WIMPs
In part two of this series, where I looked at the latest proposals from dark-matter scientists, we met University College London’s Chamkaur Ghag, who is the spokesperson for Lux-ZEPLIN. This experiment is searching for “weakly interacting massive particles” or WIMPs – the leading dark-matter candidate – down a former gold mine in South Dakota, US. A huge seven-tonne tank of liquid xenon, surrounded by an array of photomultiplier tubes, watches patiently for the flashes of light that may occur when a passing WIMP interacts with a xenon atom.
Running since 2021, the experiment just released the results of its most recent search through 280 days of data, which uncovered no evidence of WIMPs above a mass of 9 GeV/c2 (Phys. Rev. Lett.135 011802). These results help to narrow the range of possible dark-matter theories, as the new limits impose constraints on WIMP parameters that are almost five times more rigorous than the previous best. Another experiment at the INFN Laboratori Nazionali del Gran Sasso in Italy, called XENONnT, is also hoping to spot the elusive WIMPs – in its case by looking for rare nuclear recoil interactions in a liquid xenon target chamber.
Deep underground The XENON Dark Matter Project is hosted by the INFN Gran Sasso National Laboratory in Italy. The latest detector in this programme is the XENONnT (pictured) which uses liquid xenon to search for dark-matter particles. (Courtesy: XENON Collaboration)
Lux-ZEPLIN and XENONnT will cover half the parameter space of masses and energies that WIMPs could in theory have, but Ghag is more excited about a forthcoming, next-generation xenon-based WIMP detector dubbed XLZD that might settle the matter. XLZD brings together both the Lux-ZEPLIN and XENONnT collaborations, to design and build a single, common multi-tonne experiment that will hopefully leave WIMPs with no place to hide. “XLZD will probably be the final experiment of this type,” says Ghag. “It’s designed to be much larger and more sensitive, and is effectively the definitive experiment.”
I think none of us are ever going to fully believe it completely until we’ve found a WIMP and can reproduce it in a lab
Richard Massey
If WIMPs do exist, then this detector will find them, and it could happen on UK shores. Several locations around the world are in the running to host the experiment, including Boulby Mine Underground Laboratory near Whitby Bay on the north-east coast of England. If everything goes to plan, XLZD – which will contain between 40 and 100 tonnes of xenon – will be up and running and providing answers by the 2030s. It will be a huge moment for dark matter, and a nervous one for its researchers.
“I think none of us are ever going to fully believe it completely until we’ve found [a WIMP] and can reproduce it in a lab and show that it’s not just some abstract stuff that we call dark matter, but that it is a particular particle that we can identify,” says astronomer Richard Massey of the University of Durham, UK.
But if WIMPs are in fact a dead-end, then it’s not a complete death-blow for dark matter – there are other dark-matter candidates and other dark-matter experiments. For example, the Forward Search Experiment (FASER) at CERN’s Large Hadron Collider is looking for less massive dark-matter particles such as axions (read more about them in part 2). However, WIMPs have been a mainstay of dark-matter models since the 1980s. If the xenon-based experiments turn up empty-handed it will be a huge blow, and the door will creak open just a little bit more for MOND.
Galactic frontier
MOND’s battleground isn’t in particle detectors – it’s in the outskirts of galaxies and galaxy clusters, and its proof lies in the history of how our universe formed. This is dark matter’s playground too, with the popular models for how galaxies grow being based on a universe in which dark matter forms 85% of all matter. So it’s out in the depths of space where the two models clash.
The current standard model of cosmology describes how the growth of the large-scale structure of the universe, over the past 13.8 billion years of cosmic history since the Big Bang, is influenced by a combination of dark matter and dark energy (responsible for the accelerated expansion of the universe). Essentially, density fluctuations in the cosmic microwave background (CMB) radiation reflect the clumping of dark matter in the very early universe. As the cosmos aged, these clumps thinned out into the cosmic web of matter. This web is a universe-spanning network of dark-matter filaments, where all the matter lies, between which are voids that are comparatively less densely packed with matter than the filaments. Galaxies can form inside “dark matter haloes”, and at the densest points in the dark-matter filaments, galaxy clusters coalesce.
Simulations in this paradigm – known as lambda cold dark matter (ΛCDM) – suggest that galaxy and galaxy-cluster formation should be a slow process, with small galaxies forming first and gradually merging over billions of years to build up into the more massive galaxies that we see in the universe today. And it works – kind of. Recently, the James Webb Space Telescope (JWST) peered back in time to between just 300 and 400 million years after the Big Bang and found the universe to be populated by tiny galaxies perhaps just a thousand or so light-years across (ApJ970 31). This is as expected, and over time they would grow and merge into larger galaxies.
1 Step back in time
a (Courtesy: NASA/ESA/CSA/STScI/ Brant Robertson, UC Santa Cruz/ Ben Johnson, CfA/ Sandro Tacchella, University of Cambridge/ Phill Cargile, CfA)
b (Courtesy: NASA/ESA/CSA/ Joseph Olmsted, STScI/ S Carniani, Scuola Normale Superiore/ JADES Collaboration)
Data from the James Webb Space Telescope (JWST) form the basis of the JWST Advanced Deep Extragalactic Survey (JADES). (a) This infrared image from the JWST’s NIRCam highlights galaxy JADES-GS-z14-0. (b) The JWST’s NIRSpec (Near-Infrared Spectrograph) obtained this spectrum of JADES-GS-z14-0. A galaxy’s redshift can be determined from the location of a critical wavelength known as the Lyman-alpha break. For JADES-GS-z14-0 the redshift value is 14.32 (+0.08/–0.20), making it the second most distant galaxy known at less than 300 million years after the Big Bang. The current record holder, as of August 2025, is MoM-z14, which has a redshift of 14.4 (+0.02/–0.02), placing it less than 280 million years after the Big Bang (arXiv:2505.11263). Both galaxies belong to an era referred to as the “cosmic dawn”, following the epoch of reionization, when the universe became transparent to light. JADES-GS-z14-0 is particularly interesting to researchers not just because of its distance, but also because it is very bright. Indeed, it is much more intrinsically luminous and massive than expected for a galaxy that formed so soon after the Big Bang, raising more questions on the evolution of stars and galaxies in the early universe.
Yet the deeper we push into the universe, the more we observe challenges to the ΛCDM model, which ultimately threatens the very existence of dark matter. For example, those early galaxies that the JWST has observed, while being quite small, are also surprisingly bright – more so than ΛCDM predicts. This has been attributed to an initial mass function (IMF – the property that determines the average mass of stars that form) that skews more towards higher-mass stars and therefore more luminous stars than today. It does sound reasonable, except that astronomers still don’t understand why the IMF is what it is today (favouring the smallest stars; massive stars are rare) never mind what it might have been over 13 billion years ago.
Not everyone is convinced, and this is compounded by slightly later galaxies, seen around a billion years after the Big Bang, which continue the trend of being more luminous and more massive than expected. Indeed, some of these galaxies sport truly enormous black holes hundreds of times more massive than the black hole at the heart of our Milky Way. Just a couple of billion years later and significantly large galaxy clusters are already present, earlier than one would have surmised with ΛCDM.
The fall of ΛCDM?
Astrophysicist and MOND advocate Pavel Kroupa, from the University of Bonn in Germany, highlights giant elliptical galaxies in the early universe as an example of what he sees as a divergence from ΛCDM.
“We know from observations that the massive elliptical galaxies formed on shorter timescales than the less massive ellipticals,” he explains. This phenomenon has been referred to as “downsizing”, and Kroupa declares it is “a big problem for ΛCDM” because the model says that “the big galaxies take longer to form, but what we see is exactly the opposite”.
To quantify this problem, a 2020 study (MNRAS498 5581) by Australian astronomer Sabine Bellstedt and colleagues showed that half the mass in present-day elliptical galaxies was in place 11 billion years ago, compared with other galaxy types that only accrued half their mass on average about 6 billion years ago. The smallest galaxies only accrued that mass as recently as 4 billion years ago, in apparent contravention of ΛCDM.
Observations (ApJ905 40) of a giant elliptical galaxy catalogued as C1-23152, which we see as it existed 12 billion years ago, show that it formed 200 billion solar masses worth of stars in just 450 million years – a huge firestorm of star formation that ΛCDM simulations just can’t explain. Perhaps it is an outlier – we’ve only sampled a few parts of the sky, not conducted a comprehensive census yet. But as astronomers probe these cosmic depths more extensively, such explanations begin to wear thin.
Kroupa argues that by replacing dark matter with MOND, such giant early elliptical galaxies suddenly make sense. Working with Robin Eappen, who is a PhD student at Charles University in Prague, they modelled a giant gas cloud in the very early universe collapsing under gravity according to MOND, rather than if there were dark matter present.
“It is just stunning that the time [of formation of such a large elliptical] comes out exactly right,” says Kroupa. “The more massive cloud collapses faster on exactly the correct timescale, compared to the less massive cloud that collapses slower. So when we look at an elliptical galaxy, we know that thing formed from MOND and nothing else.”
Elliptical galaxies are not the only thing with a size problem. In 2021 Alexia Lopez, a PhD student at the University of Central Lancashire, UK, discovered a “Giant Arc” of galaxies spanning 3.3 billion light-years, some 9.2 billion light-years away. And in 2023 Lopez spotted another gigantic structure, a “Big Ring” (shaped more like a coil) of galaxies 1.3 billion light-years in diameter, but with a circumference of about 4 billion light-years. The opposite of these giant structures are the massive under-dense voids that take up space between the filaments of the cosmic web. The KBC Void (sometimes called the “Local Hole”), for example, is about two billion light-years across and the Milky Way among a host of other galaxies sits inside it. The trouble is, simulations in ΛCDM, with dark matter at the heart of it, cannot replicate structures and voids this big.
“We live in this huge under-density; we’re not at the centre of it but we are within it and such an under-density is completely impossible in ΛCDM,” says Kroupa, before declaring, “Honestly, it’s not worthwhile to talk about the ΛCDM model anymore.”
A bohemian model
Such fighting talk is dismissed by dark-matter astronomers because although there are obviously deficiencies in the ΛCDM model, it does such a good job of explaining so many other things. If we’re to kill ΛCDM because it cannot explain a few large ellipticals or some overly large galaxy groups or voids, then there needs to be a new model that can explain not only these anomalies, but also everything else that ΛCDM does explain.
“Ultimately we need to explain all the observations, and some of those MOND does better and some of those ΛCDM does better, so it’s how you weigh those different baskets,” says Stacy McGaugh, a MOND researcher from Case Western Reserve University in the US.
As it happens, Kroupa and his Bonn colleague Jan Pflamm-Altenburg are working on a new model that they think has what it takes to overthrow dark matter and the broader ΛCDM paradigm. Calling it the Bohemian model (the name has a double meaning – Kroupa is originally from Czechia), it incorporates MOND as its main pillar and Kroupa describes the results they are getting from their simulations in this paradigm as “stunning” (A&A698 A167).
A lot of experts at Ivy League universities will say it’s all completely impossible. But I know that part of the community is just itching to have a completely different model
Pavel Kroupa
But Kroupa admits that not everybody will be happy to see it published. “If it’s published, a lot of experts at Ivy League universities will say it’s all completely impossible,” he says. “But I know for a fact that there is part of the community, the ‘bright part’ as I call them, which is just itching to have a completely different model.”
Kroupa is staying tight-lipped on the precise details of his new model, but says that according to simulations the puzzle of large-scale structure forming earlier than expected, and growing larger faster than expected, is answered by the Bohemian model. “These structures [such as the Giant Arc and the KBC Void] are so radical that they are not possible in the ΛCDM model,” he says. “However, they pop right out of this Bohemian model.”
Binary battle
Whether you believe Kroupa’s promises of a better model or whether you see it all as bluster, the fact remains that a dark-matter-dominated universe still has some problems. Maybe they’re not serious, and all it will take is a few tweaks to make those problems go away. But maybe they’ll persist, and require new physics of some kind, and it’s this possibility that continues to leave the door open for MOND. For the rest of us, we’re still grasping for a definitive statement one way or another.
For MOND, perhaps that definitive statement could still turn out to be binary stars, as discussed in the first article in this series. Researchers have been particularly interested in so-called “wide binaries” – pairs of stars that are more than 500 AU apart. Thanks to the vast distance between them, the gravitational impact of each star on the other is weak, making it a perfect test for MOND. Idranil Banik, of the University of St Andrews, UK, controversially concluded that there was no evidence for MOND operating on the smaller scales of binary-star systems. However, other researchers such as Kyu-Hyun Chae of Sejong University in South Korea argue that they have found evidence for MOND in binary systems, and have hit out at Banik’s findings.
Indeed, after the first part of this series was published, Chae reached out to me, arguing that Banik had analysed the data incorrectly. Chae specifically points out the fraction of wide binaries (pairs that are more than 500 AU apart, meaning that the gravitational impact of each star on the other is weak, making it a perfect test for MOND) with an extra unseen close stellar companion (a factor designated fmulti) to one or both of the binary stars must be calibrated for when performing the MOND calculations. Often when two stars are extremely close together, their angular separation is so small that we can’t resolve them and don’t realize that they are binary, he explains. So we might mistake a triple system, with two stars so close together that we can’t distinguish them and a third star on a wider circumbinary orbit, for just a wide binary.
“I initially believed Banik’s claim, but because what’s at stake is too big and I started feeling suspicious, I chose to do my own investigation,” says Chae (ApJ952 128). “I came to realize the necessity of calibrating fmulti due to the intrinsic degeneracy between mass and gravity (one cannot simultaneously determine the gravity boost factor and the amount of hidden mass).”
The probability of a wide binary having an unseen extra stellar companion is the same as for shorter binaries (those that we can resolve). But for shorter binaries the gravitational acceleration is high enough that they obey regular Newtonian gravity – MOND only comes into the picture at wider separations. Therefore, the mass uncertainty in the study of wide binaries in a MOND regime can be calibrated for using those shorter-period binaries. Chae argues that Banik did not do this. “I’m absolutely confident that if the Banik et al. analysis is properly carried out, it will reveal MOND’s low-acceleration gravitational anomaly to some degree.”
So perhaps there is hope for MOND in binary systems. Given that dark matter shouldn’t be present on the scale of binary systems, any anomalous gravitational effect could only be explained by MOND. A detection would be pretty definitive, if only everyone could agree upon it.
Bullet time and mass This spectacular new image of the Bullet Cluster was created using NASA’s James Webb Space Telescope and Chandra X-ray Observatory. The new data allow for an improved measurement of the thousands of galaxies in the Bullet Cluster. This means astronomers can more accurately “weigh” both the visible and invisible mass in these galaxy clusters. Astronomers also now have an improved idea of how that mass is distributed. (X-ray: NASA/CXC/SAO; near-infrared: NASA/ESA/CSA/STScI; processing: NASA/STScI/ J DePasquale)
But let’s not kid ourselves – MOND still has a lot of catching up to do on dark matter, which has become a multi-billion-dollar industry with thousands of researchers working on it and space missions such as the European Space Agency’s Euclid space telescope. Dark matter is still in pole position, and its own definitive answers might not be too far away.
“Finding dark matter is definitely not too much to hope for, and that’s why I’m doing it,” says Richard Massey. He highlights not only Euclid, but also the work of the James Webb Space Telescope in imaging gravitational lensing on smaller scales and the Nancy G Roman Space Telescope, which will launch later this decade on a mission to study weak gravitational lensing – the way in which small clumps of matter, such as individual dark matter haloes around galaxies, subtly warp space.
“These three particular telescopes give us the opportunity over the next 10 years to catch dark matter doing something, and to be able to observe it when it does,” says Massey. That “something” could be dark-matter particles interacting, perhaps in a cluster merger in deep space, or in a xenon tank here on Earth.
“That’s why I work on dark matter rather than anything else,” concludes Massey. “Because I am optimistic.”
In the first instalment of this three-part series, Keith Cooper explored the struggles and successes of modified gravity in explaining phenomena at varying galactic scales
In the second part of the series, Keith Cooper explored competing theories of dark matter
Dark matter search: Team co-leader Christopher Tunnell is an associate professor of physics and astronomy at Rice University. (Courtesy: Jeff Fitlow/Rice)
A tiny neodymium particle suspended inside a superconducting trap could become a powerful new platform in the search for dark matter, say physicists at Rice University in the US and Leiden University in the Netherlands. Although they have not detected any dark matter signals yet, they note that their experiment marks the first time that magnetic levitation technology has been tested in this context, making it an important proof of concept.
“By showing what current technology can already achieve, we open the door to a promising experimental path to solving one of the biggest mysteries in modern physics,” says postdoctoral researcher Dorian Amaral, who co-led the project with his Rice colleague Christopher Tunnell, as well as Dennis Uitenbroek and Tjerk Oosterkamp in Leiden.
Dark matter is thought to make up most of the matter in our universe. However, since it has only ever been observed through its gravitational effects, we know very little about it, including whether it interacts (either with itself or with other particles) via forces other than gravity. Other fundamental properties, such as its mass and spin, are equally mysterious. Indeed, various theories predict dark matter particle masses that range from around 10−19 eV/c2 to a few times the mass of our own Sun – a staggering 90 orders of magnitude.
The B‒L model
The theory that predicts masses at the lower end of this range is known as the ultralight dark matter (ULDM) model. Some popular ULDM candidates include the QCD axion, axion-like particles and vector particles.
In their present work, Amaral and colleagues concentrated on vector particles. This type of dark-matter particle, they explain, can “communicate”, or interact, via charges that are different from those found in ordinary electromagnetism. Their goal, therefore, was to detect the forces arising from these so-called dark interactions.
To do this, the team focused on interactions that differ based on the baryon (B) and lepton (L) numbers of a particle. Several experiments, including fifth-force detectors such as MICROSCOPE and Eöt-Wash as well as gravitational wave interferometers such as LIGO/Virgo and KAGRA, likewise seek to explore interactions within this so-called B‒L model. Other platforms, such as torsion balances, optomechanical cavities and atomic interferometers, also show promise for making such measurements.
Incredibly sensitive setup
The Rice-Leiden team, however, chose to explore an alternative that involves levitating magnets with superconductors via the Meissner effect. “Levitated magnets are excellent force and acceleration sensors, making them ideal for detecting the minuscule signatures expected from ULDM,” Amaral says.
Such detectors also have a further advantage, he adds. Because they operate at ultralow temperatures, they are much less affected by thermal noise than is the case for detectors that rely on optical or electrical levitation. This allows them to levitate much larger and heavier objects, making them more sensitive to interactions such as those expected from B‒L model dark matter.
In their experiment, which is called POLONAISE (Probing Oscillations using Levitated Objects for Novel Accelerometry In Searches of Exotic physics), the Rice and Leiden physicists levitated a tiny magnet composed of three neodymium-iron-boron cubes inside a superconducting trap cooled to nearly absolute zero. “This setup was incredibly sensitive, enabling us to detect incredibly small motions caused by tiny external forces,” Amaral explains. “If ultralight dark matter exists, it would behave like a wave passing through the Earth, gently tugging on the magnet in a predictable, wave-like pattern. Detecting such a motion would be a direct signature of this elusive form of dark matter.”
An unconventional idea
The Rice-Leiden collaboration began after Oosterkamp and Tunnell met at a climate protest and got to chatting about their scientific work. After over a decade working on some of the world’s most sensitive dark matter experiments – with no clear detections to show for it – Tunnell was eager to return to the drawing board in terms of detector technologies. Oosterkamp, for his part, was exploring how quantum technologies could be applied to fundamental questions in physics. This shared interest in cross-disciplinary thinking, Amaral remembers, led them to the unconventional idea at the heart of their experiment. “From there, we spent a year bridging experimental and theoretical worlds. It was a leap outside our comfort zones – but one that paid off,” he says.
“Although we did not detect dark matter, our result is still valuable – it tells us what dark matter is not,” he adds. “It’s like searching a room and not finding the object you are looking for: now you know to look somewhere else.”
The team’s findings, which are detailed in Physical Review Letters, should help physicists refine theoretical models of dark matter, Amaral tells Physics World. “And on the experimental side, our work advises the key improvements needed to turn magnetic levitation into a world-leading tool for dark matter detection.”