↩ Accueil

Vue lecture

US science faces unprecedented difficulties under the Trump administration

As physicists, we like to think that physics and politics are – indeed, ought to be – unconnected. And a lot of the time, that’s true.

Certainly, the value of the magnetic moment of the muon or the behaviour of superconductors in a fusion reactor (look out for our feature article next week) have nothing do with where anyone sits on the political spectrum. It’s subjects like climate change, evolution and medical research that tend to get caught in the political firing line.

But scientists of all disciplines in the US are now feeling the impact of politics at first hand. The new administration of Donald Trump has ordered the National Institutes of Health to slash the “indirect” costs of its research projects, threatening medical science and putting the universities that support it at risk. The National Science Foundation, which funds much of US physics, is under fire too, with staff sacked and grant funding paused.

Trump has also signed a flurry of executive orders that, among other things, ban federal government initiatives to boost diversity, equity and inclusion (DEI) and instruct government departments to “combat illegal private-sector DEI preferences, mandates, policies, programs and activities”. Some organizations are already abandoning such efforts for fear of these future repercussions.

What’s troubling for physics is that attacks on diversity initiatives fall most heavily on people from under-represented groups, who are more likely to quit physics or not go into it in the first place. That’s bad news for our subject as a whole because we know that a diverse community brings in smart ideas, new approaches and clever thinking.

The speed of changes in the US is bewildering too. Yes, the proportion from federal grants for indirect costs might be too high, but making dramatic changes at short notice, with no consultation is bizarre. There’s also a danger that universities will try to recoup lost money by raising tuition fees, which will hit poorer students the hardest.

US science has long been a beacon of excellence, a top destination especially for researchers from other nations. But many scientists are fearful of speaking out, scared that they or their institutions will pay a price for any opposition.

So far, it’s been left to senior leaders such as James Gates – a theoretical physicist at the University of Maryland – to warn of the dangers in store. “My country,” he said at an event earlier this month, “is in for a 50-year period of a new dark ages.”

I sincerely hope he’s wrong.

The post US science faces unprecedented difficulties under the Trump administration appeared first on Physics World.

  •  

How international conferences can help bring women in physics together

International conferences are a great way to meet people from all over the world to share the excitement of physics and discuss the latest developments in the subject. But the International Conference on Women in Physics (ICWIP) offers more by allowing us to to listen to the experiences of people from many diverse backgrounds and cultures. At the same time, it highlights the many challenges that women in physics still face.

The ICWIP series is organized by the International Union of Pure and Applied Physics (IUPAP) and the week-long event typically features a mixture of plenaries, workshops and talks. Prior to the COVID-19 pandemic, the conferences were held in various locations across the world, but the last two have been held entirely online. The last such meeting – the 8th ICWIP run from India in 2023 – saw around 300 colleagues from 57 countries attend. I was part of a seven-strong UK contingent – at various stages of our careers – who gave a presentation describing the current situation for women in physics in the UK.

Being held solely online didn’t stop delegates fostering a sense of community or discussing their predicaments and challenges. What became evident during the week was the extent and types of issues that women from across the globe still have to contend with. One is the persistence of implicit and explicit gender bias in their institutions or workplaces. This, along with negative stereotyping of women, produces discrepancies between male and female numbers in institutions, particularly at postgraduate level and beyond. Women often end up choosing not to pursue physics later into their careers and being reluctant to take up leadership roles.

Much more needs to be done to ensure women are encouraged in their careers. Indeed, women often face challenging work–life balances, with some expected to play a greater role in family commitments than men, and have little support at their workplaces. One postdoctoral researcher at the 2023 meeting, for example, attempted to discuss her research poster in the virtual conference room while looking after her young children at home – the literal balancing of work and life in action.

A virtual presentation with five speakers' avatars stood in front of a slide showing their names
Open forum The author and co-presenters at the most recent International Conference on Women in Physics. Represented by avatars online, they gave a presentation on women in physics in the UK. (Courtesy: Chethana Setty)

To improve their circumstances, delegates suggested enhancing legislation to combat gender bias and improve institutional culture through education to reduce negative stereotypes. More should also be done to improve networks and professional associations for women in physics. Another factor mentioned at the meeting, meanwhile, is the importance of early education and issues related to equity of teaching, whether delivered face-to-face or online.

But women can face disadvantages other than their gender, such as socioeconomic status and identity, resulting in a unique set of challenges for them. This is the principle of intersectionality and was widely discussed in the context of problems in career progression.

In the UK, change is starting to happen. The Limit Less campaign by the Institute of Physics (IOP), which publishes Physics World, encourages students post 16 years old to study physics. The annual Conference for Undergraduate Women and Non-binary Physicists provides individuals with support and encouragement in their personal and professional development. There are also other initiatives such as the STEM Returner programme and the Daphne Jackson Trust for those wishing to return to a physics career. WISE Ten Steps contributes to supporting workplace culture positively and the Athena SWAN and the IOP’s new Physics Inclusion Award aims to improve women’s prospects.

As we now look forward to the next ICWIP there is still a lot more to do. We must ensure that women can continue in their physics careers while recognizing that intersectionality will play an increasingly significant role in shaping future equity, diversity and inclusion policies. It is likely that soon a new team will be sought from academia and industry, comprising of individuals at various career stages to represent the UK at the next ICWIP. Please do get involved if you are interested. Participation is not limited to women.

Women are doing physics in a variety of challenging circumstances. Gaining an international outlook of different cultural perspectives, as is possible at an international conference like the ICWIP, helps to put things in context and highlights the many common issues faced by women in physics. Taking the time to listen and learn from each other is critical, a process that can facilitate collaboration on issues that affect us all. Fundamentally, we all share a passion for physics, and endeavour to be catalysts for positive change for future generations.

  • This article was based on discussions with Sally Jordan from the Open University; Holly Campbell, UK Atomic Energy Authority; Josie C, AWE; Wendy Sadler and Nils Rehm, Cardiff University; and Sarah Bakewell and Miriam Dembo, Institute of Physics

The post How international conferences can help bring women in physics together appeared first on Physics World.

  •  

What ‘equity’ really means for physics

If you have worked in a university, research institute or business during the past two decades you will be familiar with the term equality, diversity and inclusion (EDI). There is likely to be an EDI strategy that includes measures and targets to nurture a workforce that looks more like the wider population and a culture in which everyone can thrive. You may find a reasoned business case for EDI, which extends beyond the organization’s legal obligations, to reflect and understand the people that you work with.

Look more closely and it is possible that the “E” in EDI is not actually equality, but rather equity. Equity is increasingly being used as a more active commitment, not least by the Institute of Physics, which publishes Physics World.  How, though, is equity different to equality? What is causing this change of language and will it make any difference in practice?

These questions have become more pressing as discussions around equality and equity have become entwined in the culture wars.  This is a particularly live issue in the US as Donald Trump’s second term as US president has begun to withdraw funding from EDI activities.  But it has also influenced science policy in the UK.

The distinction between equality and equity is often illustrated by a cartoon published in 2016 by the UK artist Angus Maguire (above). It shows a fence and people of variable height gaining an equal view of a baseball match thanks to different numbers of crates that they stand on. This has itself, however, resulted in arguments about other factors such as the conditions necessary to watch the game in the stadium, or indeed even join in. That requires consideration about how the teams and the stadium could adapt to the needs of all potential participants, but also how these changes might affect the experience of others involved.

In terms of education, the Organization for Economic Co-operation and Development (OECD) states that equity “does not mean that all students obtain equal education outcomes, but rather that differences in students’ outcomes are unrelated to their background or to economic and social circumstances over which the students have no control”. This is an admirable goal, but there are questions about how to achieve it.

In OECD member countries, freedom of choice and competition yield social inequalities that flow through to education and careers. This means that governments are continually balancing the benefits of inspiring and rewarding individuals alongside concerns about group injustice.

In 2024, we hosted a multidisciplinary workshop about equity in science, and especially physics. Held at the University of Birmingham, it brought together physicists at different career stages with social scientists and people who had worked on science and education in government, charities and learned societies. At the event, social scientists told us that equality is commonly conceived as a basic right to be treated equally and not discriminated against, regardless of personal characteristics. This right provides a platform for “equality of opportunity” whereby barriers are removed so talent and effort can be rewarded.

In the UK, the promotion of equality of opportunity is enshrined within the country’s Equality Act 2010 and underpins current EDI work in physics. This includes measures to promote physics to young people in deprived areas, and to women and ethnic minorities, as well as mentoring and additional academic and financial support through all stages of education and careers.  It extends to re-shaping the content and promotion of physics courses in universities so they are more appealing and responsive to a wider constituency. In many organizations, there is also training for managers to combat discrimination and bias, whether conscious or not.

Actions like these have helped to improve participation and progression across physics education and careers, but there is still significant underrepresentation and marginalization due to gender, ethnicity and social background. This is not unusual in open and competitive societies where the effects of promoting equal opportunities are often outweighed by the resources and connections of people with characteristics that are highly represented. Talent and effort are crucial in “high-performance” sectors such as academia and industry, but they are not the only factors influencing success.

Physicists at the meeting told us that they are motivated by intellectual curiosity, fascination with the natural world and love for their subject. Yet there is also, in physics, a culture of “genius” and competition, in which confidence is crucial. Facilities and working conditions, which often involve short-term contracts and international mobility, are difficult to balance alongside other life commitments. Although inequalities and exclusions are recognized, they are often ascribed to broader social factors or the inherent requirements of research. As a result, physicists tend not to accept responsibility for inequities within the discipline.

Physics has a culture of “hyper-meritocracy” where being correct counts more than respecting others

Many physicists want merit to be a reflection of talent and effort. But we identified that physics has a culture of “hyper-meritocracy” where being correct counts more than respecting others. Across the community, some believe in positive action beyond the removal of discrimination, but others can be actively hostile to any measure associated with EDI. This is a challenging environment for any young researcher and we heard distressing stories of isolation from women and colleagues who had hidden disabilities or those who were the first in their family to go to university.

The experience, positive or not, when joining a research group as a postgraduate or postdoctoral researcher is often linked with the personality of leaders. Peer groups and networks have helped many physicists through this period of their career, but it is also where the culture in a research group or department can drive some to the margins and ultimately out of the profession. In environments like this, equal opportunities have proved insufficient to advance diversity, let alone inclusion.

Culture change

Organizations that have replaced equality with equity want to signal a commitment not just to equal treatment, but also more equitable outcomes. However, those who have worked in government told us that some people become disengaged, thinking such efforts can only be achieved by reducing standards and threatening cultures they value. Given that physics needs technical proficiency and associated resources and infrastructure, it is not a discipline where equity can mean an equal distribution of positions and resources.

Physics can, though, counter the influence of wider inequalities by helping colleagues who are under-represented to gain the attributes, experiences and connections that are needed to compete successfully for doctoral studentships, research contracts and academic positions. It can also face up to its cultural problems, so colleagues who are minoritized feel less marginalized and they are ultimately recognized for their efforts and contributions.

This will require physicists giving more prominence to marginalized voices as well as critically and honestly examining their culture and tackling unacceptable behaviour. We believe we can achieve this by collaborating with our social science colleagues. That includes gathering and interpreting qualitative data, so there is shared understanding of problems, as well as designing strategies with people who are most affected, so that everyone has a stake in success.

If this happens, we can look forward to a physics community that genuinely practices equity, rather than espousing equality of opportunity.

The post What ‘equity’ really means for physics appeared first on Physics World.

  •