↩ Accueil

Vue lecture

Scientists explain why ‘seeding’ clouds with silver iodide is so efficient

Silver iodide crystals have long been used to “seed” clouds and trigger precipitation, but scientists have never been entirely sure why the material works so well for that purpose. Researchers at TU Wien in Austria are now a step closer to solving the mystery thanks to a new study that characterized surfaces of the material in atomic-scale detail.

“Silver iodide has been used in atmospheric weather modification programs around the world for several decades,” explains Jan Balajka from TU Wien’s Institute of Applied Physics, who led this research. “In fact, it was chosen for this purpose as far back as the 1940s because of its atomic crystal structure, which is nearly identical to that of ice – it has the same hexagonal symmetry and very similar distances between atoms in its lattice structure.”

The basic idea, Balajka continues, originated with the 20th-century American atmospheric scientist Bernard Vonnegut, who suggested in 1947 that introducing small silver iodide (AgI) crystals into a cloud could provide nuclei for ice to grow on. But while Vonnegut’s proposal worked (and helped to inspire his brother Kurt’s novel Cat’s Cradle), this simple picture is not entirely accurate. The stumbling block is that nucleation occurs at the surface of a crystal, not inside it, and the atomic structure of an AgI surface differs significantly from its interior.

A task that surface science has solved

To investigate further, Balajka and colleagues used high-resolution atomic force microscopy (AFM) and advanced computer simulations to study the atomic structure of 2‒3 nm diameter AgI crystals when they are broken into two pieces. The team’s measurements revealed that the surfaces of both freshly cleaved structures differed from those found inside the crystal.

More specifically, team member Johanna Hütner, who performed the experiments, explains that when an AgI crystal is cleaved, the silver atoms end up on one side while the iodine atoms appear on the other. This has implications for ice growth, because while the silver side maintains a hexagonal arrangement that provides an ideal template for the growth of ice layers, the iodine side reconstructs into a rectangular pattern that no longer lattice-matches the hexagonal symmetry of ice crystals. The iodine side is therefore incompatible with the epitaxial growth of hexagonal ice.

“Our works solves this decades-long controversy of the surface vs bulk structure of AgI, and shows that structural compatibility does matter,” Balajka says.

Difficult experiments

According to Balajka, the team’s experiments were far from easy. Many experimental methods for studying the structure and properties of material surfaces are based on interactions with charged particles such as electrons or ions, but AgI is an electrical insulator, which “excludes most of the tools available,” he explains. Using AFM enabled them to overcome this problem, he adds, because this technique detects interatomic forces between a sharp tip and the surface and does not require a conductive sample.

Another problem is that AgI is photosensitive and decomposes when exposed to visible light. While this property is useful in other contexts – AgI was a common ingredient in early photographic plates – it created complications for the TU Wien team. “Conventional AFM setups make use of optical laser detection to map the topography of a sample,” Balajka notes.

To avoid destroying their sample while studying it, the researchers therefore had to use a non-contact AFM based on a piezoelectric sensor that detects electrical signals and does not require optical readout. They also adapted their setup to operate in near-darkness, using only red light while manipulating the Ag to ensure that stray light did not degrade the samples.

The computational modelling part of the work introduced yet another hurdle to overcome. “Both Ag and I are atoms with a high number of electrons in their electron shells and are thus highly polarizable,” Balajka explains. “The interaction between such atoms cannot be accurately described by standard computational modelling methods such as density functional theory (DFT), so we had to employ highly accurate random-phase approximation (RPA) calculations to obtain reliable results.”

Highly controlled conditions

The researchers acknowledge that their study, which is detailed in Science Advances, was conducted under highly controlled conditions – ultrahigh vacuum, low pressure and temperature and a dark environment – that are very different from those that prevail inside real clouds. “The next logical step for us is therefore to confirm whether our findings hold under more representative conditions,” Balajka says. “We would like to find out whether the structure of AgI surfaces is the same in air and water, and if not, why.”

The researchers would also like to better understand the atomic arrangement of the rectangular reconstruction of the iodine surface. “This would complete the picture for the use of AgI in ice nucleation, as well as our understanding of AgI as a material overall,” Balajka says.

The post Scientists explain why ‘seeding’ clouds with silver iodide is so efficient appeared first on Physics World.

  •  

Extra carbon in the atmosphere may disrupt radio communications

Higher levels of carbon dioxide (CO2) in the Earth’s atmosphere could harm radio communications by enhancing a disruptive effect in the ionosphere. According to researchers at Kyushu University, Japan, who modelled the effect numerically for the first time, this little-known consequence of climate change could have significant impacts on shortwave radio systems such as those employed in broadcasting, air traffic control and navigation.

“While increasing CO2 levels in the atmosphere warm the Earth’s surface, they actually cool the ionosphere,” explains study leader Huixin Liu of Kyushu’s Faculty of Science. “This cooling doesn’t mean it is all good: it decreases the air density in the ionosphere and accelerates wind circulation. These changes affect the orbits and lifespan of satellites and space debris and also disrupt radio communications through localized small-scale plasma irregularities.”

The sporadic E-layer

One such irregularity is a dense but transient layer of metal ions that forms between 90‒120 km above the Earth’s surface. This sporadic E-layer (Es), as it is known, is roughly 1‒5 km thick and can stretch from tens to hundreds of kilometres in the horizontal direction. Its density is highest during the day, and it peaks around the time of the summer solstice.

The formation of the Es is hard to predict, and the mechanisms behind it are not fully understood. However, the prevailing “wind shear” theory suggests that vertical shears in horizontal winds, combined with the Earth’s magnetic field, cause metallic ions such as Fe+, Na+ and Ca+ to converge in the ionospheric dynamo region and form thin layers of enhanced ionization. The ions themselves largely come from metals in meteoroids that enter the Earth’s atmosphere and disintegrate at altitudes of around 80‒100 km.

Effects of increasing CO2 concentrations

While previous research has shown that increases in CO2 trigger atmospheric changes on a global scale, relatively little is known about how these increases affect smaller-scale ionospheric phenomena like the Es. In the new work, which is published in Geophysical Research Letters, Liu and colleagues used a whole-atmosphere model to simulate the upper atmosphere at two different CO2 concentrations: 315 ppm and 667 ppm.

“The 315 ppm represents the CO2 concentration in 1958, the year in which recordings started at the Mauna Loa observatory, Hawaii,” Liu explains. “The 667 ppm represents the projected CO2 concentration for the year 2100, based on a conservative assumption that the increase in CO2 is constant at a rate of around 2.5 ppm/year since 1958.”

The researchers then evaluated how these different CO2 levels influence a phenomenon known as vertical ion convergence (VIC) which, according to the wind shear theory, drives the Es. The simulations revealed that the higher the atmospheric CO2 levels, the greater the VIC at altitudes of 100–120 km. “What is more, this increase is accompanied by the VIC hotspots shifting downwards by approximately 5 km,” says Liu. “The VIC patterns also change dramatically during the day and these diurnal variability patterns continue into the night.”

According to the researchers, the physical mechanism underlying these changes depends on two factors. The first is reduced collisions between metallic ions and the neutral atmosphere as a direct result of cooling in the ionosphere. The second is changes in the zonal wind shear, which are likely caused by long-term trends in atmosphere tides.

“These results are exciting because they show that the impacts of CO2 increase can extend all the way from Earth’s surface to altitudes at which HF and VHF radio waves propagate and communications satellites orbit,” Liu tells Physics World. “This may be good news for ham radio amateurs, as you will likely receive more signals from faraway countries more often. For radio communications, however, especially at HF and VHF frequencies employed for aviation, ships and rescue operations, it means more noise and frequent disruption in communication and hence safety. The telecommunications industry might therefore need to adjust their frequencies or facility design in the future.”

The post Extra carbon in the atmosphere may disrupt radio communications appeared first on Physics World.

  •