↩ Accueil

Vue lecture

Famous double-slit experiment gets its cleanest test yet

Scientists at the Massachusetts Institute of Technology (MIT) in the US have achieved the cleanest demonstration yet of the famous double-slit experiment. Using two single atoms as the slits, they inferred the photon’s path by measuring subtle changes in the atoms’ properties after photon scattering. Their results matched the predictions of quantum theory: interference fringes when no path was observed, two bright spots when it was.

First performed in the 1800s by Thomas Young, the double-slit experiment has been revisited many times. Its setup is simple: send light toward a pair of slits in a screen and watch what happens. Its outcome, however, is anything but. If the light passes through the slits unobserved, as it did in Young’s original experiment, an interference pattern of bright and dark fringes appears, like ripples overlapping in a pond. But if you observe which slit the light goes through, as Albert Einsten proposed in a 1920s “thought experiment” and as other physicists have since demonstrated in the laboratory, the fringes vanish in favour of two bright spots. Hence, whether light acts as a wave (fringes) or a particle (spots) depends on whether anyone observes it. Reality itself seems to shift with the act of looking.

The great Einstein–Bohr debate

Einstein disliked the implications of this, and he and Niels Bohr debated them extensively. According to Einstein, observation only has an effect because it introduces noise. If the slits were mounted on springs, he suggested, their recoil would reveal the photon’s path without destroying the fringes.

Bohr countered that measuring the photon’s recoil precisely enough to reveal its path would blur the slits’ positions and erase interference. For him, this was not a flaw of technology but a law of nature – namely, his own principle of complementarity, which states that quantum systems can show wave-like or particle-like behaviour, but never both at once.

Physicists have performed numerous versions of the experiment since, and each time the results have sided with Bohr. Yet the unavoidable noise in real set-ups left room for doubt that this counterintuitive rule was truly fundamental.

Atoms as slits

To celebrate the International Year of Quantum Science and Technology, physicists in Wolfgang Ketterle’s group at MIT performed Einstein’s thought experiment directly. They began by cooling more than 10,000 rubidium atoms to near absolute zero and trapping them in a laser-made lattice such that each one acted as an individual scatterer of light. If a faint beam of light was sent through this lattice, a single photon could scatter off an atom.

Since the beam was so faint, the team could collect very little information per experimental cycle. “This was the most difficult part,” says team member Hanzhen Lin, a PhD student at MIT. “We had to repeat the experiment thousands of times to collect enough data.”

In every such experiment, the key was to control how much photon path information the atoms provided. The team did this by adjusting the laser traps to tune the “fuzziness” of the atoms’ position. Tightly trapped atoms had well-defined positions and so, according to Heisenberg’s uncertainty principle, they could not reveal much about the photon’s path. In these experiments, fringes appeared. Loosely trapped atoms, in contrast, had more position uncertainty and were able to move, meaning an atom struck by a photon could carry a trace of that interaction. This faint record was enough to collapse the interference fringes, leaving only spots. Once again, Bohr was right.

While Lin acknowledges that theirs is not the first experiment to measure scattered light from trapped atoms, he says it is the first to repeat the measurements after the traps were removed, while the atoms floated freely. This went further than Einstein’s spring-mounted slit idea, and (since the results did not change) eliminated the possibility that the traps were interfering with the observation.

“I think this is a beautiful experiment and a testament to how far our experimental control has come,” says Thomas Hird, a physicist who studies atom-light interactions at the University of Birmingham, UK, and was not involved in the research. “This probably far surpasses what Einstein could have imagined possible.”

The MIT team now wants to observe what happens when there are two atoms per site in the lattice instead of one. “The interactions between the atoms at each site may give us interesting results,” Lin says.

The team describes the experiment in Physical Review Letters.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Famous double-slit experiment gets its cleanest test yet appeared first on Physics World.

  •  

Quantum control of individual antiprotons puts the Standard Model to the test

Physicists have taken a major step toward unlocking the mysteries of antimatter by being the first to perform coherent spin spectroscopy on a single antiproton. Done by researchers on CERN’s BASE collaboration, the experiment measures the magnetic properties of antimatter with record-breaking precision. As a result, it could help us understand why there is much more matter than antimatter in the universe,

“The level of control the authors have achieved over an individual antimatter particle is unprecedented,” says Dmitry Budker, a physicist at the University of California, Berkeley, who was not involved in the study. “This opens the path to much more precise tests of fundamental symmetries of nature.”

In theory, the universe should have been born with equal amounts of matter and antimatter. Yet all the visible structures we see today – including stars, galaxies, planets and people – are made almost entirely of matter. This cosmic imbalance remains one of the biggest open questions in physics and is known as the baryon asymmetry problem.

“The general motivation for studying antiprotons is to test fundamental symmetries and our understanding of them,” says Stefan Ulmer, a senior member of BASE and head of the Ulmer Fundamental Symmetries Laboratory at RIKEN in Japan. “What we know about antimatter is that it appears as a symmetric solution to quantum mechanical equations – there’s no obvious reason why the universe should not contain equal amounts of matter and antimatter.”

This mystery can be probed by doing very precise comparisons of properties of matter and antimatter particles – in this case, the proton and the antiproton. For example, the Standard Model says that protons and antiprotons should have identical masses but equal and opposite electrical charges. Any deviations from the Standard Model description could shed light on baryon asymmetry.

Leap in precision

Now, the BASE (Baryon Antibaryon Symmetry Experiment) team has focused on coherent spectroscopy, which is a quantum technique that uses microwave pulses to manipulate the spin states of a single antiproton.

“We were doing spectroscopy on the spin of a single trapped antiproton, stored in a cryogenic Penning trap system,” Ulmer explains. “It is significant because this is of highest importance in studying the fundamental properties of the particle.”

By applying microwave radiation at just the right frequency, the team induced Rabi oscillations –periodic flipping of the antiproton’s spin – and observed the resulting resonances. The key result was a resonance peak 16 times narrower than in any previous antiproton measurements, meaning the team could pinpoint the transition frequency with much greater accuracy. Combined with a 1.5-fold improvement in signal-to-noise ratio, the measurement paves the way for at least a tenfold increase in the precision of antiproton magnetic moment measurements.“In principle, we could reduce the linewidth by another factor of ten if additional technology is developed,” says Ulmer.

Budker described the measurement as unprecedented, adding, “This is a key to future precise tests of CPT invariance and other fundamental-physics experiments”.

Deeply held principle

CPT symmetry – the idea that the laws of physics remain unchanged if charge, parity, and time are simultaneously reversed – is one of the most deeply held principles in physics. Testing it to higher and higher precision is essential for identifying any cracks in the Standard Model.

Ulmer says the team observed antiproton spin coherence times of up to 50 s. Coherence here refers to the ability of the antiproton’s quantum spin state to remain stable and unperturbed over time, which is essential for achieving high-precision measurements.

Measuring magnetic moments of nuclear particles is already notoriously difficult, but doing so for antimatter pushes the limits of experimental physics.

“These measurements require the development of experiments that are about three orders of magnitude more sensitive than any other apparatus developed before,” says Ulmer. “You need to build the world’s most sensitive detectors for single particles, the smallest Penning traps, and superimpose ultra-extreme magnetic gradients.”

The BASE team started development in 2005 and had early successes in proton measurements by 2011. Antiproton studies began in earnest in 2017, but achieving coherent spin control – as in the current work – required further innovations including ultra-homogeneous magnetic fields, cryogenic temperatures, and the exquisite control of noise.

Toward a deeper understanding

These improvements could also make other experiments possible. “This will also allow more precise measurements of other nuclear magnetic moments, and paves a path to better measurements in proton–antiproton mass comparisons,” Ulmer notes.

There may even be distant connections to quantum computing. “If coherence times for matter and antimatter are identical – something we aim to test – then the antimatter qubit might have applications in quantum information,” he says. “But honestly, operating an antimatter quantum computer, if you could do the same with matter, would be inefficient.”

More realistically, the team hopes to use their transportable trap system, BASE STEP, to bring antiprotons to a dedicated offline laboratory for even higher-resolution studies.

“The BASE collaboration keeps a steady course on increasing the precision of fundamental symmetry tests,” says Budker. “This is an important step in that direction.”

The research is described in Nature.

The post Quantum control of individual antiprotons puts the Standard Model to the test appeared first on Physics World.

  •  

Physicists turn atomic motion from a nuisance to a resource

In atom-based quantum technologies, motion is seen as a nuisance. The tiniest atomic jiggle or vibration can scramble the delicate quantum information stored in internal states such as the atom’s electronic or nuclear spin, especially during operations when those states get read out or changed.

Now, however, Manuel Endres and colleagues at the California Institute of Technology (Caltech), US, have found a way to turn this long-standing nuisance into a useful feature. Writing in Science, they describe a technique called erasure correction cooling (ECC) that detects and corrects motional errors without disturbing atoms that are already in their ground state (the ideal state for many quantum applications). This technique not only cools atoms; it does so better than some of the best conventional methods. Further, by controlling motion deliberately, the Caltech team turned it into a carrier of quantum information and even created hyper-entangled states that link the atoms’ motion with their internal spin states.

“Our goal was to turn atomic motion from a source of error into a useful feature,” says the paper’s lead author Adam Shaw, who is now a postdoctoral researcher at Stanford University. “First, we developed new cooling methods to remove unwanted motion, like building an enclosure around a swing to block a chaotic wind. Once the motion is stable, we can start injecting it programmatically, like gently pushing the swing ourselves. This controlled motion can then carry quantum information and perform computational tasks.”

Keeping it cool

Atoms confined in optical traps – the basic building blocks of atom-based quantum platforms – behave like quantum oscillators, occupying different vibrational energy levels depending on their temperature. Atoms in the lowest vibrational level, the motional ground state, are especially desirable because they exhibit minimal thermal motion, enabling long coherence times and high-fidelity control over quantum states.

Over the past few decades, scientists have developed various methods, including Sisyphus cooling and Raman sideband cooling, to persuade atoms into this state. However, these techniques face limitations, especially in shallow traps where motional states are harder to resolve, or in large-scale systems where uniform and precise cooling is required.

ECC builds on standard cooling methods to overcome these challenges. After an initial round of Sisyphus cooling, the researchers use spin-motion coupling and selective fluorescence imaging to pinpoint atoms still in excited motional states without disturbing the atoms already in the motional ground state. They do this by linking an atom’s motion to its internal electronic spin state, then shining a laser that only causes the “hot” (motionally excited) atoms to change the spin state and light up, while the “cold” ones in the motional ground state remain dark. The “hot” atoms are then either re-cooled or replaced with ones already in the motional ground state.

Cool idea: Schematic of the erasure correction cooling (ECC) approach for controlling atomic motion and using it as a quantum information carrier. a) Motional state detection identifies hot atoms in thermal ensembles. ECC then selectively removes or re-cools these atoms, leaving behind cold atoms in the motional ground state. b) Energy level diagram of strontium-88 showing transitions used for sideband driving and fluorescence detection. c) Erasure conversion protocol using sideband driving and state-dependent detection to identify and correct motional errors. The resulting ground-state atoms are used for quantum operations such as motion-based entanglement, hyperentanglement, and mid-circuit readout. (Courtesy: Image adapted from Shaw et al., Science 388 845-849 DOI: 10.1126/science.adn261)

This approach pushed the fraction of atoms in the ground motional state from 77% (after Sisyphus cooling alone) to over 98% and up to 99.5% when only the error-free atoms were selected for further use. Thanks to this high-fidelity preparation, the Caltech physicists further demonstrated their control over motion at the quantum level by creating a motional qubit consisting of atoms in a superposition of the ground and first excited motional states.

Cool operations

Unlike electronic superpositions, these motional qubits are insensitive to laser phase noise, highlighting their robustness for quantum information processing. Further, the researchers used the motional superposition to implement mid-circuit readout, showing that quantum information can be temporarily stored in motion, protected during measurement, and recovered afterwards. This paves the way for advanced quantum error correction, and potentially other applications as well.

“Whenever you find ways to better control a physical system, it opens up new opportunities,” Shaw observes. Motional qubits, he adds, are already being explored as a means of simulating systems in high-energy physics.

A further highlight of this work is the demonstration of hyperentanglement, or entanglement across both internal (electronic) and external (motional) degrees of freedom. While most quantum systems rely on a single type of entanglement, this work shows that motion and internal states in neutral atoms can be coherently linked, paving the way for more versatile quantum architectures.

The post Physicists turn atomic motion from a nuisance to a resource appeared first on Physics World.

  •