↩ Accueil

Vue lecture

Molecular engineering and battery recycling: developing new technologies in quantum, medicine and energy

This episode of the Physics World Weekly podcast comes from the Chicago metropolitan area – a scientific powerhouse that is home to two US national labs and some of the country’s leading universities.

Physics World’s Margaret Harris was there recently and met Nadya Mason. She is dean of the Pritzker School of Molecular Engineering at the University of Chicago, which focuses on quantum engineering; materials for sustainability; and immunoengineering. Mason explains how molecular-level science is making breakthroughs in these fields and she talks about her own research on the electronic properties of nanoscale and correlated systems.

Harris also spoke to Jeffrey Spangenberger who leads the Materials Recycling Group at Argonne National Laboratory, which is on the outskirts of Chicago. Spangenberger talks about the challenges of recycling batteries and how we could make it easier to recover materials from batteries of the future. Spangenberger leads the ReCell Center, a national collaboration of industry, academia and national laboratories that is advancing recycling technologies along the entire battery life-cycle.

On 13–14 May, The Economist is hosting Commercialising Quantum Global 2025 in London. The event is supported by the Institute of Physics – which brings you Physics World. Participants will join global leaders from business, science and policy for two days of real-world insights into quantum’s future. In London you will explore breakthroughs in quantum computing, communications and sensing, and discover how these technologies are shaping industries, economies and global regulation. Register now.

The post Molecular engineering and battery recycling: developing new technologies in quantum, medicine and energy appeared first on Physics World.

  •  

Neutrons differentiate between real and fake antique coins

Illustration of neutron tomography
Finding fakes Illustration of how neutrons can pass easily through the metallic regions of an old coin, but are blocked by hydrogen-bearing compounds formed by corrosion. (Courtesy: S Kelley/NIST)

The presence of hydrogen in a sample is usually a bad thing in neutron scattering experiments, but now researchers in the US have turned the tables on the lightest element and used it to spot fake antique coins.

The scattering of relatively slow moving neutrons from materials provides a wide range of structural information. This is because these “cold” neutrons have wavelengths on par with the separations of atoms in a materials. However, materials that contain large amounts of hydrogen-1 nuclei (protons) can be difficult to study because hydrogen is very good at scattering neutrons in random directions – creating a noisy background signal. Indeed, biological samples containing lots of hydrogen are usually “deuterated” – replacing hydrogen with deuterium – before they are placed in a neutron beam.

However, there are some special cases where this incoherent scattering of hydrogen can be useful – measuring the water content of samples, for example.

Surfeit of hydrogen

Now, researchers in the US and South Korea have used a neutron beam to differentiate between genuine antique coins and fakes. The technique relies on the fact that the genuine coins have suffered corrosion that has resulted in the inclusion of hydrogen-bearing compounds within the coins.

Led by Youngju Kim at Daniel Hussey at the National Institute of Standards and Technology (NIST) in Colorado, the team fired a parallel beam of neutrons through individual coins (see figure). The particles travel with ease through a coin’s original metal, but tend to be scattered by the hydrogen-rich corrosion inclusions. This creates a 2D pattern of high and low intensity regions on a neutron-sensitive screen behind the coin. The coin can be rotated and a series of images taken. Then, the researchers used computed tomography to create a 3D image showing the corroded regions of a coin.

The team used this neutron tomography technique to examine an authentic 19th century coin that was recovered from a shipwreck, and on a coin that is known to be a replica. Although both coins had surface corrosion, the corrosion extended much deeper into the bulk of the authentic coin than it did in the replica.

The researchers also used a separate technique called neutron grating interferometry to characterize the pores in the surfaces of the coins. Pores are common on the surface of coins that have been buried or submerged. Authentic antique coins are often found buried or submerged, whereas replica coins will be buried or submerged to make them look more authentic.

Small-angle scattering

Neutron grating interferometry looks at the small-angle scattering of neutrons from a sample and focuses on structures that range in size from about 1 nm to 1 micron.

The team found that the authentic coin had many more tiny pores than the replica coin, which was dominated by much larger (millimetre scale) pores.

This observation was expected because when a coin is buried or submerged, chemical reactions cause metals to leach out of its surface, creating millimetre-sized pores. As time progresses, however, further chemical reactions cause corrosion by-products such as copper carbonates to fill in the pores. The result is that the pores in the older authentic coin are smaller than the pores in the newer replica coin.

The team now plans to expand its study to include more Korean coins and other metallic artefacts. The techniques could also be used to pinpoint corrosion damage in antique coins, allowing these areas to be protected using coatings.

As well as being important to coin collectors and dealers, the ability to verify the age of coins is of interest to historians and economists – who use the presence of coins in their research.

The study was done using neutrons from NIST’s research reactor in Maryland. That facility is scheduled to close in 2026 so the team plans to continue its investigation using a neutron source in South Korea.

The research is described in Scientific Reports.

The post Neutrons differentiate between real and fake antique coins appeared first on Physics World.

  •  

Ferenc Krausz explains how ultrashort laser pulses could help detect disease

This episode of the Physics World Weekly podcast features the Nobel laureate Ferenc Krausz. He is director of the Max-Planck Institute of Quantum Optics and a professor at LMU Munich, both in Germany, and CEO and scientific director of the Center for Molecular Fingerprinting in Budapest, Hungary.

In a conversation with Physics World’s Tami Freeman Krausz talks about his research into using ultrashort-pulsed laser technology to develop a diagnostic tool for early disease detection. He also discusses his collaboration with Semmelweis University to establish the John von Neumann Institute for Data Science, and describes the Science4People initiative, a charity that he and his colleagues founded to provide education for children who have been displaced by the war in Ukraine.

On 13–14 May, The Economist is hosting Commercialising Quantum Global 2025 in London. The event is supported by the Institute of Physics – which brings you Physics World. Participants will join global leaders from business, science and policy for two days of real-world insights into quantum’s future. In London you will explore breakthroughs in quantum computing, communications and sensing, and discover how these technologies are shaping industries, economies and global regulation. Register now and use code QUANTUM20 to receive 20% off. This offer ends on 4 May.

The post Ferenc Krausz explains how ultrashort laser pulses could help detect disease appeared first on Physics World.

  •  

Driving skills and innovation in the UK’s semiconductor industry

This episode of the Physics World Weekly podcast features the materials scientist Paul Meredith, who is director of the Centre for Integrative Semiconductor Materials (CISM) at the UK’s Swansea University.

In a conversation with Physics World’s Matin Durrani, Meredith talks about the importance of semiconductors in a hi-tech economy and why it is crucial for the UK to have a homegrown semiconductor industry.

Founded in 2020, CISM moved into a new, state-of-the-art £50m building in 2023 and is now in its first full year of operation. Meredith explains how technological innovation and skills training at CSIM is supporting chipmakers in the M4 hi-tech corridor, which begins in Swansea in South Wales and stretches eastward to London.

The post Driving skills and innovation in the UK’s semiconductor industry appeared first on Physics World.

  •  

Radiosurgery made easy: the role of the Gamma Knife in modern radiotherapy

This podcast features Alonso Gutierrez, who is chief of medical physics at the Miami Cancer Institute in the US. In a wide-ranging conversation with Physics World’s Tami Freeman, Gutierrez talks about his experience using Elekta’s Leksell Gamma Knife for radiosurgery in a busy radiotherapy department.

This podcast is sponsored by Elekta.

The post Radiosurgery made easy: the role of the Gamma Knife in modern radiotherapy appeared first on Physics World.

  •  

Non-invasive pressure sensor could revolutionize how brain injuries are diagnosed

This episode of the Physics World Weekly podcast features an interview with Panicos Kyriacou, who is chief scientist at the UK-based start-up Crainio. The company has developed a non-invasive way of using light to measure the pressure inside the skull. Knowing this intracranial pressure is crucial when diagnosing traumatic brain injury, which a leading cause of death and disability. Today, the only way to assess intracranial pressure is to insert a sensor into the patient’s brain, so Crainio’s non-invasive technique could revolutionize how brain injuries are diagnosed and treated.

Kyriacou tells Physics World’s Tami Freeman why it is important to assess a patient’s intracranial pressure as soon as possible after a head injury. He explains how Crainio’s optical sensor measures blood flow in the brain and then uses machine learning to deduce the intracranial pressure.

Kyriacou is also professor of engineering at City St George’s University of London, where the initial research for the sensor was done. He recalls how Crainio was spun out of the university and how it is currently in a second round of clinical trials.

As well as being non-invasive, Crainio’s technology could reduce the cost of determining intracranial pressure and make it possible to make measurements in the field, shortly after injuries occur.

The post Non-invasive pressure sensor could revolutionize how brain injuries are diagnosed appeared first on Physics World.

  •  

William Phillips: Nobel laureate talks about his passion for quantum physics

This episode of the Physics World Weekly podcast features William Phillips, who shared the 1997 Nobel Prize for Physics for his work on cooling and trapping atoms using laser light.

In a wide-ranging conversation with Physics World’s Margaret Harris, Phillips talks about his long-time fascination with quantum physics – which began with an undergraduate project on electron spin resonance. Phillips chats about quirky quantum phenomena such as entanglement and superposition and explains how they are exploited in atomic clocks and quantum computing. He also looks to the future of quantum technologies and stresses the importance of curiosity-led research.

Phillips has spent much of his career at US’s National Institute for Standards and Technology (NIST) in Maryland and he also a professor of physics at the University of Maryland.

 

This podcast is supported by Atlas Technologies, specialists in custom aluminium and titanium vacuum chambers as well as bonded bimetal flanges and fittings used everywhere from physics labs to semiconductor fabs.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

 

The post William Phillips: Nobel laureate talks about his passion for quantum physics appeared first on Physics World.

  •  

Operating system for quantum networks is a first

Researchers in the Netherlands, Austria, and France have created what they describe as the first operating system for networking quantum computers. Called QNodeOS, the system was developed by a team led by Stephanie Wehner at Delft University of Technology. The system has been tested using several different types of quantum processor and it could help boost the accessibility of quantum computing for people without an expert knowledge of the field.

In the 1960s, the development of early operating systems such as OS/360 and UNIX  represented a major leap forward in computing. By providing a level of abstraction in its user interface, an operating system enables users to program and run applications, without having to worry about how to reconfigure the transistors in the computer processors. This advance laid the groundwork for the many of the digital technologies that have revolutionized our lives.

“If you needed to directly program the chip installed in your computer in order to use it, modern information technologies would not exist,” Wehner explains. “As such, the ability to program and run applications without needing to know what the chip even is has been key in making networks like the Internet actually useful.”

Quantum and classical

The users of nascent quantum computers would also benefit from an operating system that allows quantum (and classical) computers to be connected in networks. Not least because most people are not familiar with the intricacies of quantum information processing.

However, quantum computers are fundamentally different from their classical counterparts, and this means a host of new challenges faces those developing network operating systems.

“These include the need to execute hybrid classical–quantum programs, merging high-level classical processing (such as sending messages over a network) with quantum operations (such as executing gates or generating entanglement),” Wehner explains.

Within these hybrid programs, quantum computing resources would only be used when specifically required. Otherwise, routine computations would be offloaded to classical systems, making it significantly easier for developers to program and run their applications.

No standardized architecture

In addition, Wehner’s team considered that, unlike the transistor circuits used in classical systems, quantum operations currently lack a standardized architecture – and can be carried out using many different types of qubits.

Wehner’s team addressed these design challenges by creating a QNodeOS, which is a hybridized network operating system. It combines classical and quantum “blocks”, that provide users with a platform for performing quantum operations.

“We implemented this architecture in a software system, and demonstrated that it can work with different types of quantum hardware,” Wehner explains. The qubit-types used by the team included the electronic spin states of nitrogen–vacancy defects in diamond and the energy levels of individual trapped ions.

Multi-tasking operation

“We also showed how QNodeOS can perform advanced functions such as multi-tasking. This involved the concurrent execution of several programs at once, including compilers and scheduling algorithms.”

QNodeOS is still a long way from having the same impact as UNIX and other early operating systems. However, Wehner’s team is confident that QNodeOS will accelerate the development of future quantum networks.

“It will allow for easier software development, including the ability to develop new applications for a quantum Internet,” she says. “This could open the door to a new area of quantum computer science research.”

The research is described in Nature.

The post Operating system for quantum networks is a first appeared first on Physics World.

  •  

Microsoft’s Chetan Nayak on topological qubits, the physics of bigger splashes

Last week I had the pleasure of attending the Global Physics Summit (GPS) in Anaheim California, where I rubbed shoulders with 15,0000 fellow physicists. The best part of being there was chatting with lots of different people, and in this podcast I share two of those conversations.

First up is Chetan Nayak, who is a senior researcher at Microsoft’s Station Q quantum computing research centre here in California. In February, Nayak and colleagues claimed a breakthrough in the development of topological quantum bits (qubits) based on Majorana zero modes. In principle, such qubits could enable the development of practical quantum computers, but not all physicists were convinced, and the announcement remains controversial – despite further results presented by Nayak in a packed session at the GPS.

I caught up with Nayak after his talk and asked him about the challenges of achieving Microsoft’s goal of a superconductor-based topological qubit. That conversation is the first segment of today’s podcast.

Distinctive jumping technique

Up next, I chat with Atharva Lele about the physics of manu jumping, which is a competitive aquatic sport that originates from the Māori and Pasifika peoples of New Zealand. Jumpers are judged by the height of their splash when they enter the water, and the best competitors use a very distinctive technique.

Lele is an undergraduate student at the Georgia Institute of Technology in the US, and is part of team that analysed manu techniques in a series of clever experiments that included plunging robots. He explains how to make a winning manu jump while avoiding the pain of a belly flop.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Microsoft’s Chetan Nayak on topological qubits, the physics of bigger splashes appeared first on Physics World.

  •  

Steampunk meets quantum physics at the GPS

From the Global Physics Summit in Anaheim, California

Some of the most fascinating people that you meet at American Physical Society meetings are not actually physicists, and Bruce Rosenbaum is no exception. Based in Massachusetts, Rosenbaum is a maker of beautiful steampunk objects and he is in Anaheim with a quantum-related creation (see figure).

At first glance Rosenbaum’s sculpture of a “quantum engine” fits in nicely at a conference exhibition that features gleaming vacuum chambers and other such things. However, this lovely artistic object is meant to be admired, rather than being a functioning machine.

At the centre of the object is a small vacuum chamber that could hold a single trapped ion – which could be operated as a quantum engine. Lasers are pointed at the ions through the chamber windows and the chamber is surrounded by a spherical structure that represents both the Bloch sphere of quantum physics and an armillary sphere. The latter being used to demonstrate the motions of celestial objects in the days before computers.  But as someone who, many years ago, did some electron spectroscopy, the rings are more reminiscent of Helmholtz coils that would screen the ion from Earth’s magnetic field.

I should make it clear that the neither the vacuum chamber, nor the lasers are real — and there is no trapped ion. However, a real quantum engine based on a trapped ion has been created in a real physics lab. So, in principle, the sculpture could be made into a functional device by using “real components”.

Past and future connections

In my mind, the object symbolizes the connection between the state-of-the-art today (the trapped-ion qubit) and the many technologies that have come before (armillary sphere).

While Rosenbaum does not have a background in physics, I think he has a kinship with the thousands of experimental physicists who have built devices that bear a striking resemblance to this object. But some physicists were involved in the development of this beautiful object. They include Nicole Yunger Halpern of the University of Maryland. Yunger Halpern is a theorist who uses the ideas of quantum information to study thermodynamics. She describes the field as “quantum steampunk” because like the artistic genre of steampunk, it combines 19th century concepts (thermodynamics) with the 21st century concepts of quantum science and technology.

I had a lovely chat with Rosenbaum and he had some very interesting things to say about the intersection of creativity and technology – things that are highly relevant to physicists. I hope to have him and perhaps one of his physicist colleagues on a future episode of the Physics World Weekly podcast.

The post Steampunk meets quantum physics at the GPS appeared first on Physics World.

  •  

Artur Ekert explains how Albert Einstein and John Bell inspired quantum cryptography

When physicists got their first insights into the quantum world more than a century ago, they found it puzzling to say the least. But gradually, and through clever theoretical and experimental work, a consistent quantum theory emerged.

Two physicists that who played crucial roles in this evolution were Albert Einstein and John Bell. In this episode of the Physics World Weekly podcast the theoretical crypto-physicist Artur Ekert explains how a quantum paradox identified by Einstein and colleagues in 1935 inspired a profound theoretical breakthrough by Bell three decades later.

Ekert, who splits his time between the University of Oxford and the National University of Singapore, describes how he used Bell’s theorem to create a pioneering quantum cryptography protocol and he also chats about current research in quantum physics and beyond.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Artur Ekert explains how Albert Einstein and John Bell inspired quantum cryptography appeared first on Physics World.

  •  

Manu jumping: the physics of making a bigger splash

From the Global Physics Summit in Anaheim, California

The greatest pleasure of being at a huge physics conference is learning about the science of something that’s familiar, but also a little bit quirky. That’s why I always try to go to sessions given by undergraduate students, because for some reason they seem to do research projects that are the most fun.

I was not disappointed by the talk given this morning by Atharva Lele, who is at the Georgia Institute of Technology here in the US. He spoke about the physics of manu jumping, a competitive sport that originates from the Māori and Pasifika peoples of New Zealand.

The general idea will be familiar to anyone who messed around at swimming pools as a child: who can make the highest splash when they jump into the water.

Cavity creation

According to Lele, the best manu jumpers enter the water back first, creating a V-shape with their legs and upper body. The highest splashes are made when a jumper creates a deep and wide air cavity that quickly closes, driving water upwards in a jet – often to astonishing heights.

Lele and colleagues discovered that a 45° angle between the legs and torso afforded the highest splashes. This is probably because this angle results in a cavity that is both deep and wide. An analysis of videos of manu jumpers revealed that the best ones entered the water at an angle of about 46°, corroborating the teams findings. This is good news for jumpers, because there is risk of injury at higher angles (think belly flop).

Another important aspect of the study looked at what jumpers did when they entered the water – which is to roll and kick. To study the effect of this motion, the team created a “manu bot”, which unfolded as it entered the water. They found that there was an optimal opening time for making the highest splashes – it is a mere 0.26 s.

I was immediately taken back to my childhood in Canada and realized that we were doing our own version of manu from the high diving board at the local pool. The most successful technique that we discovered was to keep our bodies straight, but entering the water at an angle. This would consistently produce a narrow jet of water. I realize now that by entering the water at an angle, we must have been creating a relatively deep and wide cavity – although probably not as efficiently and manu jumpers. Maybe Lele and colleagues could do a follow-up study looking at alternative versions of manu around the world.

The post Manu jumping: the physics of making a bigger splash appeared first on Physics World.

  •  

Global Physics Summit: this week, Anaheim is the hub of world physics

From the Global Physics Summit in Anaheim, California

I spent most of Saturday travelling between the UK and Anaheim in Southern California, so I was up very early on Sunday with jetlag. So just as the sun was rising over the Santa Ana Mountains on a crisp morning, I went for a run in the suburban neighbourhood just south of the Anaheim Convention Center. As I made my way back to my hotel, the sidewalks were already thronging with physicists on their way to register for the Global Physics Summit (GPS) – which is being held in Anaheim by the American Physical Society (APS).

The GPS combines the APS’s traditional March and April meetings, which focus on condensed-matter and particle and nuclear physics, respectively – and much more. This year, about 14,000 physicists are expected to attend. I popped out at lunchtime and spotted a “physics family” walking along Harbor Boulevard, with parents and kids all wearing vintage APS T-shirts with clever slogans. They certainly stood out from most families, many of which were wearing Mickey Mouse ears (Disneyland is just across the road from the convention centre).

Uniting physicists

The GPS starts in earnest bright and early Monday morning, and I am looking forward to spending a week surrounded by thousands of fellow physicists. While many physicists in the US  are facing some pretty dire political and funding issues, I am hoping that the global community can unite in the face of the anti-science forces that have emerged in some countries.

This year is the International Year of Quantum Science and Technology, so it’s not surprising that quantum mechanics will be front and centre here in Anaheim. I am looking forward to the “Quantum Playground”, which will be on much of this week. It promises, “themed areas; hands-on interactive experiences; demonstrations and games; art and science installations; mini-performances; and ask the experts”. I’ll report back once I have paid a visit.

The post Global Physics Summit: this week, Anaheim is the hub of world physics appeared first on Physics World.

  •  

Ionizing radiation: its biological impacts and how it is used to treat disease

This episode of the Physics World Weekly podcast features Ileana Silvestre Patallo, a medical physicist at the UK’s National Physical Laboratory, and Ruth McLauchlan, consultant radiotherapy physicist at Imperial College Healthcare NHS Trust.

In a wide-ranging conversation with Physics World’s Tami Freeman, Patallo and McLauchlan explain how ionizing radiation such as X-rays and proton beams interact with our bodies and how radiation is being used to treat diseases including cancer.

The post Ionizing radiation: its biological impacts and how it is used to treat disease appeared first on Physics World.

  •  

New materials for quantum technology, how ultrasound can help detect breast cancer

In this episode of the Physics World Weekly podcast, we explore how computational physics is being used to develop new quantum materials; and we look at how ultrasound can help detect breast cancer.

Our first guest is Bhaskaran Muralidharan, who leads the Computational Nanoelectronics & Quantum Transport Group at the Indian Institute of Technology Bombay. In a conversation with Physics World’s Hamish Johnston, he explains how computational physics is being used to develop new materials and devices for quantum science and technology. He also shares his personal perspective on quantum physics in this International Year of Quantum Science and Technology.

Our second guest is Daniel Sarno of the UK’s National Physical Laboratory, who is an expert in the medical uses of ultrasound. In a conversation with Physics World’s Tami Freeman, Sarno explains why conventional mammography can struggle to detect cancer in patients with higher density breast tissue. This is a particular problem because women with such tissue are at higher risk of developing the disease. To address this problem, Sarno and colleagues have developed a ultrasound technique for measuring tissue density and are commercializing it via a company called sona.

  • Bhaskaran Muralidharan is an editorial board member on Materials for Quantum Technology. The journal is produced by IOP Publishing, which also brings you Physics World

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post New materials for quantum technology, how ultrasound can help detect breast cancer appeared first on Physics World.

  •  

Ask me anything: Artur Ekert – ‘Nature doesn’t know that we divided all phenomena into physics, chemistry and biology’

What skills do you use every day in your job?

Apart from the usual set of mathematical skills ranging from probability theory and linear algebra to aspects of cryptography, the most valuable skill is the ability to think in a critical and dissecting way. Also, one mustn’t be afraid to go in different directions and connect dots. In my particular case, I was lucky enough that I knew the foundations of quantum physics and the problems that cryptographers were facing and I was able to connect the two. So I would say it’s important to have a good understanding of topics outside your narrow field of interest. Nature doesn’t know that we divided all phenomena into physics, chemistry and biology, but we still put ourselves in those silos and don’t communicate with each other.

Artur Ekert flying a small plane
Flying high and low “Physics – not just quantum mechanics, but all its aspects – deeply shapes my passion for aviation and scuba diving,” says Artur Ekert. “Experiencing and understanding the world above and below brings me great joy and often clarifies the fine line between adventure and recklessness.” (Courtesy: Artur Ekert)

What do you like best and least about your job?

Least is easy, all admin aspects of it. Best is meeting wonderful people. That means not only my senior colleagues – I was blessed with wonderful supervisors and mentors – but also the junior colleagues, students and postdocs that I work with. This job is a great excuse to meet interesting people.

What do you know today that you wish you’d known at the start of your career?

That it’s absolutely fine to follow your instincts and your interests without paying too much attention to practicalities. But of course that is a post-factum statement. Maybe you need to pay attention to certain practicalities to get to the comfortable position where you can make the statement I just expressed.

The post Ask me anything: Artur Ekert – ‘Nature doesn’t know that we divided all phenomena into physics, chemistry and biology’ appeared first on Physics World.

  •  

Exploring CERN: Physics World visits the world’s leading particle-physics lab

In this episode of the Physics World Weekly podcast, online editor Margaret Harris chats about her recent trip to CERN. There, she caught up with physicists working on some of the lab’s most exciting experiments and heard from CERN’s current and future leaders.

Founded in Geneva in 1954, today CERN is most famous for the Large Hadron Collider (LHC), which is currently in its winter shutdown. Harris describes her descent 100 m below ground level to visit the huge ATLAS detector and explains why some of its components will soon be updated as part of the LHC’s upcoming high luminosity upgrade.

She explains why new “crab cavities” will boost the number of particle collisions at the LHC. Among other things, this will allow physicists to better study how Higgs bosons interact with each other, which could provide important insights into the early universe.

Harris describes her visit to CERN’s Antimatter Factory, which hosts several experiments that are benefitting from a 2021 upgrade to the lab’s source of antiprotons. These experiments measure properties of antimatter – such as its response to gravity – to see if its behaviour differs from that of normal matter.

Harris also heard about the future of the lab from CERN’s director general Fabiola Gianotti and her successor Mark Thomson, who will take over next year.

The post Exploring CERN: <em>Physics World</em> visits the world’s leading particle-physics lab appeared first on Physics World.

  •