↩ Accueil

Vue lecture

Physicists gather in Nottingham for the IOP’s Celebration of Physics 2025

With so much turmoil in the world at the moment, it’s always great to meet enthusiastic physicists celebrating all that their subject has to offer. That was certainly the case when I travelled with my colleague Tami Freeman to the 2025 Celebration of Physics at Nottingham Trent University (NTU) on 10 April.

Organized by the Institute of Physics (IOP), which publishes Physics World, the event was aimed at “physicists, creative thinkers and anyone interested in science”. It also featured some of the many people who won IOP awards last year, including Nick Stone from the University of Exeter, who was awarded the 2024 Rosalind Franklin medal and prize.

Stone was honoured for his “pioneering use of light for diagnosis and therapy in healthcare”, including “developing novel Raman spectroscopic tools and techniques for rapid in vivo cancer diagnosis and monitoring”. Speaking in a Physics World Live chat, Stone explained why Raman spectroscopy is such a useful technique for medical imaging.

Nottingham is, of course, a city famous for medical imaging, thanks in particular to the University of Nottingham Nobel laureate Peter Mansfield (1933–2017), who pioneered magnetic resonance imaging (MRI). In an entertaining talk, Rob Morris from NTU explained how MRI is also crucial for imaging foodstuffs, helping the food industry to boost productivity, reduce waste – and make tastier pork pies.

Still on the medical theme, Niall Holmes from Cerca Magnetics, which was spun out from the University of Nottingham, explained how his company has developed wearable magnetoencephalography (MEG) sensors that can measures magnetic fields generated by neuronal firings in the brain. In 2023 Cerca won one of the IOP’s business and innovation awards.

Richard Friend from the University of Cambridge, who won the IOP’s top Isaac Newton medal and prize, discussed some of the many recent developments that have followed from his seminal 1990 discovery that semiconducting polymers can be used in light-emitting diodes (LEDs).

The event ended with a talk from particle physicist Tara Shears from the University of Liverpool, who outlined some of the findings of the new IOP report Physics and AI, to which she was an adviser. Based on a survey with 700 responses and a workshop with experts from academia and industry, the report concludes that physics doesn’t only benefit from AI – but underpins it too.

I’m sure AI will be good for physics overall, but I hope it never removes the need for real-life meetings like the Celebration of Physics.

The post Physicists gather in Nottingham for the IOP’s Celebration of Physics 2025 appeared first on Physics World.

  •  

Don’t have a PhD? The quantum industry still wants you

Andrew Martin, skills policy lead at the UK’s Department for Science, Innovation and Technology (DSIT), flashed up a slide. Speaking at the ninth Careers in Quantum event in Bristol last week, he listed the eight skills that the burgeoning quantum-technology sector wants. Five are various branches of engineering, including electrical and electronics, mechanical, software and systems. A sixth is materials science and chemistry, with a seventh being quality control.

Quantum companies, of course, do also want “quantum specialists”, which was the eighth skill identified by Martin. But it’s a sign of how mature the sector has become that being a hotshot quantum physicist is no longer the only route in. That point was underlined by Carlos Faurby, a hardware integration engineer at Sparrow Quantum in Denmark, which makes single-photon sources for quantum computers. “You don’t need a PhD in physics to work at Sparrow,” Faurby declared.

Quantum tech certainly has a plethora of career options, with the Bristol event featuring a selection of firms from across the quantum ecosystem. Some are making prototype quantum computers (Quantum Motion, Quantinuum, Oxford Ionics) or writing the algorithms to run on quantum computers (Phasecraft). Others are building quantum networks (BT, Toshiba), working on quantum error correction (Riverlane) or developing quantum cryptography (KETS Quantum). Businesses building hardware such as controllers and modems were present too.

With the 2025 International Year of Quantum Science and Technology (IYQ) now in full swing, the event underlined just how thriving the sector is, with lots of career choices for physicists – whether you have a PhD or not. But competition to break in is intense. Phasecraft says it gets 50–100 applicants for each student internship it offers, with Riverlane receiving almost 200 applications for two summer placements.

That’s why it’s vital for physics students to develop their “soft skills” – or “professional skills” as several speakers preferred to call them. Team working, project management, collaboration and communication are all essential for jobs in the quantum industry, as indeed they are for all careers. Sadly, many physicists don’t realize soon enough just how crucial soft skills are.

Reflecting on his time at Light Trace Photonics, which he co-founded in 2021, Dominic Sulway joked in a panel discussion that he’d “enjoyed developing all the skills people told me I’d need for my PhD”. Of course, if you really want to break into the sector, why not follow his lead and start a business yourself? It’s a rewarding experience, I was told, and there doesn’t seem to be any slow-down in the number of quantum firms starting up.

  • For more information on career options for physicists, check out the free-to-read 2025 Physics World Careers guide

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Don’t have a PhD? The quantum industry still wants you appeared first on Physics World.

  •  

Test your quantum knowledge in this fun quiz

Two comic-style images labelled 1 and 2. First shows twin girls with the IYQ logo on their clothing. Second shows Alice and Bob on the telephone in Roy Lichtenstein style
(Courtesy: Jorge Cham; IOP Publishing)

1 Can you name the mascot for IYQ 2025?

2 In quantum cryptography, who eavesdrops on Alice and Bob?

Two images labelled 3 and 4. 3: photo of a large wire sculpture on a pier over the Thames. 4: STM image of an oval of bright colours with small peaks all around the outside and one peak in the middle
(Courtesy: Andy Roberts IBM Research/Science Photo Library)

3 Which artist made the Quantum Cloud sculpture in London?

4 IBM used which kind of atoms to create its Quantum Mirage image?

5 When Werner Heisenberg developed quantum mechanics on Helgoland in June 1925, he had travelled to the island to seek respite from what?
A His allergies
B His creditors
C His funders
D His lovers

6 According to the State of Quantum 2024 report, how many countries around the world had government initiatives in quantum technology at the time of writing?
A 6
B 17
C 24
D 33

7 The E91 quantum cryptography protocol was invented in 1991. What does the E stand for?
A Edison
B Ehrenfest
C Einstein
D Ekert

8 British multinational consumer-goods firm Reckitt sells a “Quantum” version of which of its household products?
A Air Wick freshener
B Finish dishwasher tablets
C Harpic toilet cleaner
D Vanish stain remover

9 John Bell’s famous theorem of 1964 provides a mathematical framework for understanding what quantum paradox?
A Einstein–Podolsky–Rosen
B Quantum indefinite causal order
C Schrödinger’s cat
D Wigner’s friend

10 Which celebrated writer popularized the notion of Schrödinger’s cat in the mid-1970s?
A Douglas Adams
B Margaret Atwood
C Arthur C Clarke
D Ursula K le Guin

11 Which of these isn’t an interpretation of quantum mechanics?
A Copenhagen
B Einsteinian
C Many worlds
D Pilot wave

12 Which of these companies is not a real quantum company?
A Qblox
B Qruise
C Qrypt
D Qtips

13 Which celebrity was spotted in the audience at a meeting about quantum computers and music in London in December 2022?
A Peter Andre
B Peter Capaldi
C Peter Gabriel
D Peter Schmeichel

14 What of the following birds has not yet been chosen by IBM as the name for different versions of its quantum hardware?
A Condor
B Eagle
C Flamingo
D Peregrine

15 When quantum theorist Erwin Schrödinger fled Nazi-controlled Vienna in 1938, where did he hide his Nobel-prize medal?
A In a filing cabinet
B Under a pot plant
C Behind a sofa
D In a desk drawer

16 Which of the following versions of the quantum Hall effect has not been observed so far in the lab?
A Fractional quantum Hall effect
B Anomalous fractional quantum Hall effect
C Anyonic fractional quantum Hall effect
D Excitonic fractional quantum Hall effect

17 What did Quantum Coffee on Front Street West in Toronto call its recently launched pastry, which is a superposition of a croissant and muffin?
A Croissin
B Cruffin
C Muffant
D Muffcro

18 What destroyed the Helgoland guest house where Heisenberg stayed in 1925 while developing quantum mechanics?
A A bomb
B A gas leak
C A rat infestation
D A storm

  • This quiz is for fun and there are no prizes. Answers are revealed below.

 

Answers

1. Quinnie  2. Eve  3. Antony Gormley. 4. Cobalt. 5. A. 6. D. 7. D. 8. B. 9. A. 10. D. 11. B. 12. D. 13. C. 14. C. 15. A. 16. C. 17. B. 18. A

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Test your quantum knowledge in this fun quiz appeared first on Physics World.

  •  

US science faces unprecedented difficulties under the Trump administration

As physicists, we like to think that physics and politics are – indeed, ought to be – unconnected. And a lot of the time, that’s true.

Certainly, the value of the magnetic moment of the muon or the behaviour of superconductors in a fusion reactor (look out for our feature article next week) have nothing do with where anyone sits on the political spectrum. It’s subjects like climate change, evolution and medical research that tend to get caught in the political firing line.

But scientists of all disciplines in the US are now feeling the impact of politics at first hand. The new administration of Donald Trump has ordered the National Institutes of Health to slash the “indirect” costs of its research projects, threatening medical science and putting the universities that support it at risk. The National Science Foundation, which funds much of US physics, is under fire too, with staff sacked and grant funding paused.

Trump has also signed a flurry of executive orders that, among other things, ban federal government initiatives to boost diversity, equity and inclusion (DEI) and instruct government departments to “combat illegal private-sector DEI preferences, mandates, policies, programs and activities”. Some organizations are already abandoning such efforts for fear of these future repercussions.

What’s troubling for physics is that attacks on diversity initiatives fall most heavily on people from under-represented groups, who are more likely to quit physics or not go into it in the first place. That’s bad news for our subject as a whole because we know that a diverse community brings in smart ideas, new approaches and clever thinking.

The speed of changes in the US is bewildering too. Yes, the proportion from federal grants for indirect costs might be too high, but making dramatic changes at short notice, with no consultation is bizarre. There’s also a danger that universities will try to recoup lost money by raising tuition fees, which will hit poorer students the hardest.

US science has long been a beacon of excellence, a top destination especially for researchers from other nations. But many scientists are fearful of speaking out, scared that they or their institutions will pay a price for any opposition.

So far, it’s been left to senior leaders such as James Gates – a theoretical physicist at the University of Maryland – to warn of the dangers in store. “My country,” he said at an event earlier this month, “is in for a 50-year period of a new dark ages.”

I sincerely hope he’s wrong.

The post US science faces unprecedented difficulties under the Trump administration appeared first on Physics World.

  •