↩ Accueil

Vue lecture

Ask me anything: Giulia Rubino – ‘My work involves continuously engaging a balance of creativity, critical thinking and curiosity’

What skills do you use every day in your job?

Beyond the technical skills tied to specific aspects of my research, my work involves continuously engaging a balance of creativity, critical thinking and curiosity. Creativity alone isn’t enough – in physics, ideas must ultimately stand up to scrutiny. Something is either right or it isn’t, so the goal is to let your imagination run free, while keeping it anchored to scientific rigour.

This balance becomes especially important when it comes to defining your own research direction. Early in your career, you’re usually handed a problem to work on. But, over time, you have to learn to ask your own questions, and formulating good ones is much harder than it sounds.

In the beginning, most of the ideas you come up with turn out either to be flawed or have already been explored. The alternative is to stay in safe territory and do incremental work, which certainly has its place, but it’s difficult to build a research career on that alone.

What helps is staying curious. Finding a meaningful research question often means diving into unfamiliar literature, following sparks of interest, and carving out time to read and think critically. It also means being open to inspiration from other people’s work, not just from research that overlaps with your own, but potentially from entirely different areas.

To me, one of the most precious traits in research is the ability to keep your curiosity alive

I’ve seen how easy it can be to fall into the trap of only valuing ideas that align with your own. To me, one of the most precious traits in research is the ability to keep your curiosity alive: to remain open to surprise, ready to recognize when you’re wrong, be willing to learn, and to be excited by someone else’s discovery, even when it has nothing to do with your own work.

What do you like best and least about your job?

What I like best is the freedom. I get to choose what my next research project will be about, and sometimes that process starts in the simplest of ways. I see an exciting talk at a conference, become fascinated by a new idea, and find myself reading everything I can about it. I’ll come back, pitch it to a student, and if they’re excited too, we explore it together.

When I start something new, I often feel like an imposter, venturing into foreign territory and trying to operate as if I know my way around, but as time goes on, things start to fall into place. Eventually, you reach the point where you create something new that others in the field may find interesting or inspiring in turn. That moment – when a once-distant topic becomes something you have actually contributed to – is deeply rewarding.

What I like least is answering e-mails. As a student, I couldn’t understand why some professors took ages to reply. Now I do. Some days, my inbox just fills up endlessly, and responding thoughtfully to every message would take the whole day. It’s a balancing act, deciding when to say yes and when to say no, and learning to say no in a considerate and fair way takes time and emotional energy. You want to be generous with your time, especially when someone genuinely needs help, but finding this balance can be exhausting. It’s an important part of the job, but I wish it took up a bit less space.

What do you know today that you wish you’d known at the start of your career?

That everyone feels like an imposter sometimes. When I started out as a student, I looked around and assumed everyone else was an expert, while I was just trying to find my way, painfully aware of how much I didn’t know. Over time, you do gain confidence in certain areas, but research constantly pushes you in new directions. That means learning new things, starting from scratch, and feeling like an imposter all over again.

The first time I heard the term “imposter syndrome”, it felt like a revelation. Just knowing that this feeling had a name, and that others experienced it too, was validating. Does this mean I feel less like an imposter now? Not really. But I’ve come to understand that it’s part of the process. It means I’m still learning, still being challenged, still exploring new directions. And if that feeling never goes away entirely, maybe that’s a good sign.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Ask me anything: Giulia Rubino – ‘My work involves continuously engaging a balance of creativity, critical thinking and curiosity’ appeared first on Physics World.

  •  

Reversible computing could help solve AI’s looming energy crisis

This episode of the Physics World Weekly podcast features Hannah Earley, a mathematician and physicist who is chief technical officer and co-founder of Vaire Computing.

The company is developing hardware for reversible computing, a paradigm with the potential to reduce significantly the energy required to do computations – which could be a boon for power-hungry applications like artificial intelligence.

In a conversation with Physics World’s Margaret Harris, Earley talks about the physics, engineering and commercialization of reversible computing. They also chat about the prototype chips that Vaire is currently working on and the company’s plans for the future.

The post Reversible computing could help solve AI’s looming energy crisis appeared first on Physics World.

  •  

New optical cryostat combines high cooling capacity, low vibrations and large sample area

The development of advance quantum materials and devices often involves making measurements at very low temperatures. This is crucial when developing single-photon emitters and detectors for quantum technologies. And even if a device or material will not be used at cryogenic temperatures, researchers will sometimes make measurements at low temperatures in order to reduce thermal noise.

This R&D will often involve optical techniques such as spectroscopy and imaging, which use lasers and free-space optics. These optical systems must remain in alignment to ensure the quality and repeatability of the measurements. Furthermore, the vibration of optical components must be kept to an absolute minimum because motion will degrade the performance of instrumentation.

Minimizing vibration is usually achieved by doing experiments on optical tables, which are very large, heavy and rigid in order to dampen motion. Therefore, when a cryogenic cooler (cryocooler) is deployed on an optical table it is crucial that it does not introduce unwanted vibrations.

Closed-cycle cryocoolers offer an efficient way to cool samples to temperatures as low as ~2 K to 4 K (−272 °C to −269 °C). Much like a domestic refrigerator or air conditioner, these cryocoolers involve the cyclic compression and expansion of a gas – which is helium in cryogenic systems.

In 2010 Montana Instruments founder Luke Mauritsen, a mechanical engineer and entrepreneur, recognized that the future development of quantum materials and devices would rely on optical cryostats that allow researchers to make optical measurements at very low temperatures and at very low levels of vibration. To make that possible, Mauritsen founded Montana Instruments, which in 2010 launched its first low-vibration cryostats. Based in Bozeman, Montana, the company was acquired by Sweden’s Atlas Copco in 2022 and it continues to develop cryogenic technologies for cutting-edge quantum science and other demanding applications.

Until recently, all of Montana’s low-vibration optical cryostats used Gifford–McMahon (GM) cryocoolers. While these systems provide low temperatures and low vibrations, they are limited in terms of the cooling power that they can deliver. This is because operating GM cryocoolers at higher powers results in greater vibrations.

To create a low-vibration cryostat with more cooling power, Montana has developed the Cryostation 200 PT, which is the first Montana system to use a pulse-tube cryocooler. Pulse tubes offer similar cooling powers to GM cryocoolers but at much lower vibration levels. As a result, the Cryostation 200 PT delivers much higher cooling power, while maintaining very low vibrations on par with Montana’s other cryostats.

Montana’s R&D manager Josh Doherty explains, “One major reason that a pulse tube has lower vibrations is that its valve motor can be ‘remote’, located a short distance from coldhead of the cryostat. This allows us to position the valve motor, which generates vibrations, on a cart next to the optical table so its energy can be shunted to the ground, away from the experimental space on the optical table.”

However, isolating the coldhead from the valve motor is not enough to achieve the new cryostat’s very low levels of vibration. During operation, helium gas moves back and forth in the pulse tube and this causes tiny vibrations that are very difficult to mitigate. Using its extensive experience, Montana has minimized the vibrations at the sample/device mount and has also reduced the vibrational energy transferred from the pulse tube to the optical table. Doherty explains that this was done using the company’s patented technologies that minimize the transfer of vibrational energy, while at the same time maximizing thermal conductance between the pulse tube’s first stage and second stage flanges and the sample/device mounting surface(s). This includes the use of flexible, high-thermal-conductivity links and flexible vacuum bellows connections between the coldhead and the sample/device.

Breadboard
200mm breadboard The Cryostation 200 PT offers a large working area that can be accessed via multiple feedthrough options that support free-space optics, RF and DC electrical connections, optical fibres and a vacuum connection. (Courtesy: Montana Instruments)

Doherty adds, “we intentionally design the supporting structure to de-tune it from the pulse tube vibration source”. This was done by first measuring the pulse-tube vibrations in the lab to determine the vibrational frequencies at which energy is transferred to the optical table. Doherty and colleagues then used the ANSYS engineering/multiphysics software to simulate designs of the pulse tube support and the sample mount supporting structures.

“We optimized the supporting structure design, through material choices, assembly methods and geometry to mismatch the simulated natural frequencies of the support structure from the dominant vibrations of the source,” he explains.

As a result, the Cryostation 200 PT delivers more that 250 mW cooling power at 4.2 K, with a peak-to-peak vibrational amplitude of less than 30 nm. This is more than three times the cooling power delivered by Montana’s Cryostation s200, which offers a similarly-sized sample/device area and vibrational performance.

The control unit has a touchscreen user interface, which displays the cryostat temperature, temperature stability and vacuum pressure.

The cryostat has multiple feedthrough options that support free-space optics, RF and DC electrical connections, optical fibres and a vacuum connection. The Cryostation 200 PT supports Montana’s Cryo-Optic microscope objective and nanopositioner, which can be integrated within the cryostat. Also available is a low working distance window, which supports the use of an external microscope.

According to Montana Instrument senior product manager Patrick Gale, the higher cooling power of the Cryostation 200 PT means that it can support larger experimental payloads – meaning that a much wider range of experiments can be done within the cryostat. For example, more electrical connections can be made with the outside world than had been possible before.

“Every wire that you bring into the cryostat increases that heat load a little bit,” explains Gale, adding, “By using a 1 W pulse tube, we can cool the system down faster than any of our other systems”. While Montana’s other systems have typical cooling times of about 10 h, this has been reduced to about 6 h in the Cryostation 200. “This is particularly important for commercial users who are testing multiple samples in a week,” says Gale. “Saving that four hours per measurement allows a user to do two tests per day, versus just one per day.”

According to Gale, applications of the Cryostation 200 PT include developing ion traps for use in quantum computing, quantum sensing and atomic clocks. Other applications related to quantum technologies include the development of photonic devices; spin-based devices included those based on nitrogen-vacancies in diamond; quantum dots; and superconducting circuits.

The post New optical cryostat combines high cooling capacity, low vibrations and large sample area appeared first on Physics World.

  •  

Helgoland: leading scientists reflect on 100 years of quantum physics and look to the future

Last week, Physics World’s Matin Durrani boarded a ferry in Hamburg that was bound for Helgoland – an archipelago in the North Sea about 70 km off the north-west coast of Germany.

It was a century ago in Helgoland that the physicist Werner Heisenberg devised the mathematical framework that underpins our understanding of quantum physics.

Matin was there with some of the world’s leading quantum physicists for the conference Helgoland 2025: 100 Years of Quantum Mechanics – which celebrated Heisenberg’s brief stay in Helgoland.

He caught up with three eminent physicists and asked them to reflect on Heisenberg’s contributions to quantum mechanics and look forward to the next 100 years of quantum science and technology. They are Tracy Northup at the University of Vienna; Michelle Simmons of the University of New South Wales, Sydney; and Peter Zoller of the University of Innsbruck.

• Don’t miss the 2025 Physics World Quantum Briefing, which is free to read via this link.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Helgoland: leading scientists reflect on 100 years of quantum physics and look to the future appeared first on Physics World.

  •  

Exploring careers in healthcare for physicists and engineers

In this episode of the Physics World Weekly podcast we explore the career opportunities open to physicists and engineers looking to work within healthcare – as medical physicists or clinical engineers.

Physics World’s Tami Freeman is in conversation with two early-career physicists working in the UK’s National Health Service (NHS). They are Rachel Allcock, a trainee clinical scientist at University Hospitals Coventry and Warwickshire NHS Trust, and George Bruce, a clinical scientist at NHS Greater Glasgow and Clyde. We also hear from Chris Watt, head of communications and public affairs at IPEM, about the new IPEM careers guide.

Courtesy: RADformationThis episode is supported by Radformation, which is redefining automation in radiation oncology with a full suite of tools designed to streamline clinical workflows and boost efficiency. At the centre of it all is AutoContour, a powerful AI-driven autocontouring solution trusted by centres worldwide.

The post Exploring careers in healthcare for physicists and engineers appeared first on Physics World.

  •  

Richard Bond and George Efstathiou: meet the astrophysicists who are shaping our understanding of the early universe

This episode of the Physics World Weekly podcast features George Efstathiou and Richard Bond, who share the 2025 Shaw Prize in Astronomy, “for their pioneering research in cosmology, in particular for their studies of fluctuations in the cosmic microwave background (CMB). Their predictions have been verified by an armada of ground-, balloon- and space-based instruments, leading to precise determinations of the age, geometry, and mass-energy content of the universe.”

Bond and Efstathiou talk about how the CMB emerged when the universe was just 380,000 years old and explain how the CMB is observed today. They explain why studying fluctuations in today’s CMB provides a window into the nature of the universe as it existed long ago, and how future studies could help physicists understand the nature of dark matter – which is one of the greatest mysteries in physics.

Efstathiou is emeritus professor of astrophysics at the University of Cambridge in the UK – and Richard Bond is a professor at the Canadian Institute for Theoretical Astrophysics (CITA) and university professor at the University of Toronto in Canada. Bond and Efstathiou share the 2025 Shaw Prize in Astronomy and its $1.2m prize money equally.

This podcast is sponsored by The Shaw Prize Foundation.

The post Richard Bond and George Efstathiou: meet the astrophysicists who are shaping our understanding of the early universe appeared first on Physics World.

  •  

Teaching quantum physics to everyone: pictures offer a new way of understanding

Quantum science is enjoying a renaissance as nascent quantum computers emerge from the lab and quantum sensors are being used for practical applications.

As the technologies we use become more quantum in nature, it follows that everyone should have a basic understanding of quantum physics. To explore how quantum physics can be taught to the masses, I am joined by Arjan Dhawan, Aleks Kissinger and Bob Coecke – who are all based in the UK.

Coecke is chief scientist at Quantinuum – which develops quantum computing hardware and software. Kissinger is associate professor of quantum computing at the University of Oxford; and Dhawan is studying mathematics at the University of Durham.

Kissinger and Coecke have developed a way of teaching quantum physics using diagrams. In 2023, Oxford and Quantinuum joined forces to use the method in a pilot summer programme for 15 to 17 year-olds. Dhawan was one of their students.

Physics World is brought to you by IOP Publishing, which also publishes scholarly journals, conference proceedings and ebooks.

You can download the book The Ringed Planet: Second Edition free of charge for a limited time only. By Joshua Colwell, the book is a must read on Saturn and the Cassini mission. An updated and expanded third edition is also hot off the press.

Browse all ebooks here and remember that you can always read the first chapters of all IOPP ebooks for free.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

 

The post Teaching quantum physics to everyone: pictures offer a new way of understanding appeared first on Physics World.

  •  

A Martian aurora, how the universe fades away, Heisenberg on holiday, physics of fake coins

In this episode of the Physics World Weekly podcast I look at what’s new in the world of physics with the help of my colleagues Margaret Harris and Matin Durrani.

We begin on Mars, where NASA’s Perseverance Rover has made the first observation of an aurora from the surface of the Red Planet. Next, we look deep into the future of the universe and ponder the physics that will govern how the last stars will fade away.

Then, we run time in reverse and go back to the German island of Helgoland, where in 1925 Werner Heisenberg laid the foundations of modern quantum mechanics. The island will soon host an event celebrating the centenary and Physics World will be there.

Finally, we explore how neutrons are being used to differentiate between real and fake antique coins and chat about the Physics World Quantum Briefing 2025.

The post A Martian aurora, how the universe fades away, Heisenberg on holiday, physics of fake coins appeared first on Physics World.

  •  

Quantum computing for artists, musicians and game designers

Many creative industries rely on cutting-edge digital technologies, so it is not surprising that this sector could easily become an early adopter of quantum computing.

In this episode of the Physics World Weekly podcast I am in conversation with James Wootton, who is chief scientific officer at Moth Quantum. Based in the UK and Switzerland, the company is developing quantum-software tools for the creative industries – focusing on artists, musicians and game developers.

Wootton joined Moth Quantum in September 2024 after working on quantum error correction at IBM. He also has long-standing interest in quantum gaming and creating tools that make quantum computing more accessible. If you enjoyed this interview with Wootton, check out this article that he wrote for Physics World in 2018: “Playing games with quantum computers“.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

 

The post Quantum computing for artists, musicians and game designers appeared first on Physics World.

  •  

Delta.g wins IOP’s qBIG prize for its gravity sensors

The UK-based company Delta.g has bagged the 2025 qBIG prize, which is awarded by the Institute of Physics (IOP). Initiated in 2023, qBIG celebrates and promotes the innovation and commercialization of quantum technologies in the UK and Ireland.

Based in Birmingham, Delta.g makes quantum sensors that measure the local gravity gradient. This is done using atom interferometry, whereby laser pulses are fired at a cloud of cold atoms that is freefalling under gravity.

On the Earth’s surface, this gradient is sensitive to the presence of buildings and underground voids such as tunnels. The technology was developed by physicists at the University of Birmingham and in 2022 they showed how it could be used to map out a tunnel below a road on campus. The system has also been deployed in a cave and on a ship to test its suitability for use in navigation.

Challenging to measure

“Gravity is a fundamental force, yet its full potential remains largely untapped because it is so challenging to measure,” explains Andrew Lamb who is co-founder and chief technology officer at Delta.g. “As the first to take quantum technology gravity gradiometry from the lab to the field, we have set a new benchmark for high-integrity, noise-resistant data transforming how we understand and navigate the subsurface.”

Awarded by the IOP, the qBIG prize is sponsored by Quantum Exponential, which is the UK’s first enterprise venture capital fund focused on quantum technology. The winner was announced today at the Economist’s Commercialising Quantum Global 2025 event in London. Delta.g receives a £10,000 unrestricted cash prize; 10 months of mentoring from Quantum Exponential; and business support from the IOP.

Louis Barson, the IOP’s director of science, innovation and skills says, “The IOP’s role as UK and Ireland coordinator of the International Year of Quantum 2025 gives us a unique opportunity to showcase the exciting developments in the quantum sector. Huge congratulations must go to the Delta.g team, whose incredible work stood out in a diverse and fast-moving field.”

Two runners-up were commended by the IOP. One is Glasgow-based  Neuranics, which makes quantum sensors that detect tiny magnetic signals from the human body. This other is Southampton’s Smith Optical, which makes an augmented-reality display based on quantum technology.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

 

The post Delta.g wins IOP’s qBIG prize for its gravity sensors appeared first on Physics World.

  •  

Electrolysis workstation incorporates mass spectrometry to accelerate carbon-dioxide reduction research

The electrochemical reduction of carbon dioxide is used to produce a range of chemical and energy feedstocks including syngas (hydrogen and carbon monoxide), formic acid, methane and ethylene. As well as being an important industrial process, the large-scale reduction of carbon dioxide by electrolysis offers a practical way to capture and utilize carbon dioxide.

As a result, developing new and improved electrochemical processes for carbon-dioxide reduction is an important R&D activity. This work involves identifying which catalyst and electrolyte materials are optimal for efficient production. And when a promising electrochemical system is identified in the lab, the work is not over because the design must be then scaled up to create an efficient and practical industrial process.

Such R&D activities must overcome several challenges in operating and characterizing potential electrochemical systems. These include maintaining the correct humidification of carbon-dioxide gas during the electrolysis process and minimizing the production of carbonates – which can clog membranes and disrupt electrolysis.

While these challenges can be daunting, they can be overcome using the 670 Electrolysis Workstation from US-based Scribner. This is a general-purpose electrolysis system designed to test the materials used in the conversion of electrical energy to fuels and chemical feedstocks – and it is ideal for developing systems for carbon-dioxide reduction.

Turn-key and customizable

The workstation is a flexible system that is both turn-key and customizable. Liquid and gas reactants can be used on one or both of the workstation’s electrodes. Scribner has equipped the 670 Electrolysis Workstation with cells that feature gas diffusion electrodes and membranes from US-based Dioxide Materials. The company specializes in the development of technologies for converting carbon dioxide into fuels and chemicals, and it was chosen by Scribner because Dioxide Materials’ products are well documented in the scientific literature.

The gas diffusion electrodes are porous graphite cathodes through which carbon-dioxide gas flows between input and output ports. The gas can migrate from the graphite into a layer containing a metal catalyst. Membranes are used in electrolysis cells to ensure that only the desired ions are able to migrate across the cell, while blocking the movement of gases.

Two men in a lab
Fully integrated Scribner’s Jarrett Mansergh (left) and Luke Levin-Pompetzki of Hiden Analytical in Scribner’s lab after integrating the electrolysis and mass-spectrometry systems. (Courtesy: Scribner)

The system employs a multi-range  ±20 A and 5 V potentiostat for high-accuracy operation over a wide range of reaction rates and cell sizes. The workstation is controlled by Scribner’s FlowCell™ software, which provides full control and monitoring of test cells and comes pre-loaded with a wide range of experimental protocols. This includes electrochemical impedance spectroscopy (EIS) capabilities up to 20 KHz and cyclic voltammetry protocols – both of which are used to characterize the health and performance of electrochemical systems. FlowCell™ also allows users to set up long duration experiments while providing safety monitoring with alarm settings for the purging of gases.

Humidified gas

The 670 Electrolysis Workstation features a gas handling unit that can supply humidified gas to test cells. Adding water vapour to the carbon-dioxide reactant is crucial because the water provides the protons that are needed to convert carbon dioxide to products such as methane and syngas. Humidifying gas is very difficult and getting it wrong leads to unwanted condensation in the system. The 670 Electrolysis Workstation uses temperature control to minimize condensation. The same degree of control can be difficult to achieve in homemade systems, leading to failure.

The workstation offers electrochemical cells with 5 cm2 and 25 cm2 active areas. These can be used to build carbon-dioxide reduction cells using a range of materials, catalysts and membranes – allowing the performance of these prototype cells to be thoroughly evaluated. By studying cells at these two different sizes, researchers can scale up their electrochemical systems from a preliminary experiment to something that is closer in size to an industrial system. This makes the 670 Electrolysis Workstation ideal for use across university labs, start-up companies and corporate R&D labs.

The workstation can handle, acids, bases and organic solutions. For carbon-dioxide reduction, the cell is operated with a liquid electrolyte on the positive electrode (anode) and gaseous carbon dioxide at the negative electrode (cathode). An electric potential is applied across the electrodes and the product gas comes off the cathode side.

The specific product is largely dependent on the catalyst used at the cathode. If a silver catalyst is used for example, the cell is likely to produce the syngas. If a tin catalyst is used, the product is more likely to be formic acid.

Mass spectrometry

The best way to ensure that the desired products are being made in the cell is to connect the gas output to a mass spectrometer. As a result, Scribner has joined forces with Hiden Analytical to integrate the UK-based company’s HPR-20 mass spectrometer for gas analysis. The Hiden system is specifically configured to perform continuous analysis of evolved gases and vapours from the 670 Electrolysis Workstation.

CO2 reduction cell feature
The Scribner CO2 Reduction Cell Fixture (Courtesy: Scribner)

If a cell is designed to create syngas, for example, the mass spectrometer will determine exactly how much carbon monoxide is being produced and how much hydrogen is being produced. At the same time, researchers can monitor the electrochemical properties of the cell. This allows researchers to study relationships between a system’s electrical performance and the chemical species that it produces.

Monitoring gas output is crucial for optimizing electrochemical processes that minimize negative effects such as the production of carbonates, which is a significant problem when doing carbon dioxide reduction.

In electrochemical cells, carbon dioxide is dissolved in a basic solution. This results in the precipitation of carbonate salts that clog up the membranes in cells, greatly reducing performance. This is a significant problem when scaling up cell designs for industrial use because commercial cells must be very long-lived.

Pulsed-mode operation

One strategy for dealing with carbonates is to operate electrochemical cells in pulsed mode, rather than in a steady state. The off time allows the carbonates to migrate away from electrodes, which minimizes clogging. The 670 Electrolysis Workstation allows users to explore the use of short, second-scale pulses. Another option that researchers can explore is the use of pulses of fresh water to flush carbonates away from the cathode area. These and other options are available in a set of pre-programmed experiments that allow users to explore the mitigation of salt formation in their electrochemical cells.

The gaseous products of these carbonate-mitigation modes can be monitored in real time using Hiden’s mass spectrometer. This allows researchers to identify any changes in cell performance that are related to pulsed operation. Currently, electrochemical and product characteristics can be observed on time scales as short as 100 ms. This allows researchers to fine-tune how pulses are applied to minimize carbonate production and maximize the production of desired gases.

Real-time monitoring of product gases is also important when using EIS to observe the degradation of the electrochemical performance of a cell over time. This provides researchers with a fuller picture of what is happening in a cell as it ages.

The integration of Hiden’s mass spectrometer to the 670 Electrolysis Workstation is the latest innovation from Scribner. Now, the company is working on improving the time resolution of the system so that even shorter pulse durations can be studied by users. The company is also working on boosting the maximum current of the 670 to 100 A.

The post Electrolysis workstation incorporates mass spectrometry to accelerate carbon-dioxide reduction research appeared first on Physics World.

  •  

Molecular engineering and battery recycling: developing new technologies in quantum, medicine and energy

This episode of the Physics World Weekly podcast comes from the Chicago metropolitan area – a scientific powerhouse that is home to two US national labs and some of the country’s leading universities.

Physics World’s Margaret Harris was there recently and met Nadya Mason. She is dean of the Pritzker School of Molecular Engineering at the University of Chicago, which focuses on quantum engineering; materials for sustainability; and immunoengineering. Mason explains how molecular-level science is making breakthroughs in these fields and she talks about her own research on the electronic properties of nanoscale and correlated systems.

Harris also spoke to Jeffrey Spangenberger who leads the Materials Recycling Group at Argonne National Laboratory, which is on the outskirts of Chicago. Spangenberger talks about the challenges of recycling batteries and how we could make it easier to recover materials from batteries of the future. Spangenberger leads the ReCell Center, a national collaboration of industry, academia and national laboratories that is advancing recycling technologies along the entire battery life-cycle.

On 13–14 May, The Economist is hosting Commercialising Quantum Global 2025 in London. The event is supported by the Institute of Physics – which brings you Physics World. Participants will join global leaders from business, science and policy for two days of real-world insights into quantum’s future. In London you will explore breakthroughs in quantum computing, communications and sensing, and discover how these technologies are shaping industries, economies and global regulation. Register now.

The post Molecular engineering and battery recycling: developing new technologies in quantum, medicine and energy appeared first on Physics World.

  •  

Neutrons differentiate between real and fake antique coins

Illustration of neutron tomography
Finding fakes Illustration of how neutrons can pass easily through the metallic regions of an old coin, but are blocked by hydrogen-bearing compounds formed by corrosion. (Courtesy: S Kelley/NIST)

The presence of hydrogen in a sample is usually a bad thing in neutron scattering experiments, but now researchers in the US have turned the tables on the lightest element and used it to spot fake antique coins.

The scattering of relatively slow moving neutrons from materials provides a wide range of structural information. This is because these “cold” neutrons have wavelengths on par with the separations of atoms in a materials. However, materials that contain large amounts of hydrogen-1 nuclei (protons) can be difficult to study because hydrogen is very good at scattering neutrons in random directions – creating a noisy background signal. Indeed, biological samples containing lots of hydrogen are usually “deuterated” – replacing hydrogen with deuterium – before they are placed in a neutron beam.

However, there are some special cases where this incoherent scattering of hydrogen can be useful – measuring the water content of samples, for example.

Surfeit of hydrogen

Now, researchers in the US and South Korea have used a neutron beam to differentiate between genuine antique coins and fakes. The technique relies on the fact that the genuine coins have suffered corrosion that has resulted in the inclusion of hydrogen-bearing compounds within the coins.

Led by Youngju Kim and Daniel Hussey at the National Institute of Standards and Technology (NIST) in Colorado, the team fired a parallel beam of neutrons through individual coins (see figure). The particles travel with ease through a coin’s original metal, but tend to be scattered by the hydrogen-rich corrosion inclusions. This creates a 2D pattern of high and low intensity regions on a neutron-sensitive screen behind the coin. The coin can be rotated and a series of images taken. Then, the researchers used computed tomography to create a 3D image showing the corroded regions of a coin.

The team used this neutron tomography technique to examine an authentic 19th century coin that was recovered from a shipwreck, and on a coin that is known to be a replica. Although both coins had surface corrosion, the corrosion extended much deeper into the bulk of the authentic coin than it did in the replica.

The researchers also used a separate technique called neutron grating interferometry to characterize the pores in the surfaces of the coins. Pores are common on the surface of coins that have been buried or submerged. Authentic antique coins are often found buried or submerged, whereas replica coins will be buried or submerged to make them look more authentic.

Small-angle scattering

Neutron grating interferometry looks at the small-angle scattering of neutrons from a sample and focuses on structures that range in size from about 1 nm to 1 micron.

The team found that the authentic coin had many more tiny pores than the replica coin, which was dominated by much larger (millimetre scale) pores.

This observation was expected because when a coin is buried or submerged, chemical reactions cause metals to leach out of its surface, creating millimetre-sized pores. As time progresses, however, further chemical reactions cause corrosion by-products such as copper carbonates to fill in the pores. The result is that the pores in the older authentic coin are smaller than the pores in the newer replica coin.

The team now plans to expand its study to include more Korean coins and other metallic artefacts. The techniques could also be used to pinpoint corrosion damage in antique coins, allowing these areas to be protected using coatings.

As well as being important to coin collectors and dealers, the ability to verify the age of coins is of interest to historians and economists – who use the presence of coins in their research.

The study was done using neutrons from NIST’s research reactor in Maryland. That facility is scheduled to restart in 2026 so the team plans to continue its investigation using a neutron source in South Korea.

The research is described in Scientific Reports.

The post Neutrons differentiate between real and fake antique coins appeared first on Physics World.

  •  

Ferenc Krausz explains how ultrashort laser pulses could help detect disease

This episode of the Physics World Weekly podcast features the Nobel laureate Ferenc Krausz. He is director of the Max-Planck Institute of Quantum Optics and a professor at LMU Munich, both in Germany, and CEO and scientific director of the Center for Molecular Fingerprinting in Budapest, Hungary.

In a conversation with Physics World’s Tami Freeman Krausz talks about his research into using ultrashort-pulsed laser technology to develop a diagnostic tool for early disease detection. He also discusses his collaboration with Semmelweis University to establish the John von Neumann Institute for Data Science, and describes the Science4People initiative, a charity that he and his colleagues founded to provide education for children who have been displaced by the war in Ukraine.

On 13–14 May, The Economist is hosting Commercialising Quantum Global 2025 in London. The event is supported by the Institute of Physics – which brings you Physics World. Participants will join global leaders from business, science and policy for two days of real-world insights into quantum’s future. In London you will explore breakthroughs in quantum computing, communications and sensing, and discover how these technologies are shaping industries, economies and global regulation. Register now and use code QUANTUM20 to receive 20% off. This offer ends on 4 May.

The post Ferenc Krausz explains how ultrashort laser pulses could help detect disease appeared first on Physics World.

  •  

Driving skills and innovation in the UK’s semiconductor industry

This episode of the Physics World Weekly podcast features the materials scientist Paul Meredith, who is director of the Centre for Integrative Semiconductor Materials (CISM) at the UK’s Swansea University.

In a conversation with Physics World’s Matin Durrani, Meredith talks about the importance of semiconductors in a hi-tech economy and why it is crucial for the UK to have a homegrown semiconductor industry.

Founded in 2020, CISM moved into a new, state-of-the-art £50m building in 2023 and is now in its first full year of operation. Meredith explains how technological innovation and skills training at CSIM is supporting chipmakers in the M4 hi-tech corridor, which begins in Swansea in South Wales and stretches eastward to London.

The post Driving skills and innovation in the UK’s semiconductor industry appeared first on Physics World.

  •  

Radiosurgery made easy: the role of the Gamma Knife in modern radiotherapy

This podcast features Alonso Gutierrez, who is chief of medical physics at the Miami Cancer Institute in the US. In a wide-ranging conversation with Physics World’s Tami Freeman, Gutierrez talks about his experience using Elekta’s Leksell Gamma Knife for radiosurgery in a busy radiotherapy department.

This podcast is sponsored by Elekta.

The post Radiosurgery made easy: the role of the Gamma Knife in modern radiotherapy appeared first on Physics World.

  •