↩ Accueil

Vue lecture

New open-access journal AI for Science aims to revolutionize scientific discovery

AI for Science journal cover
Intelligent read: the new diamond open-access journal AI for Science will meet the need for high-quality journals dedicated to artificial intelligence (courtesy: IOP Publishing)

Are you in the field of AI for science? Now, you have a new place to share your latest work to the world.  IOP Publishing has partnered with the Songshan Lake Materials Laboratory in China to launch a new diamond” open-access journal to showcase how artificial intelligence (AI) is driving scientific innovationAI for Science (AI4S) will publish high-impact original research, reviews, and perspectives to highlight the transformative applications and impact of AI.

The launch of the interdisciplinary journal AI4S comes as AI technologies become increasingly integral to scientific research from drug discovery to quantum computing and materials science.

AI is one of the most dynamic and rapidly expanding areas of research so much so that in the last five years the topic has expanded by nearly ten times the rate of general scientific output.  

Gian-Marco Rignanese from École Polytechnique de Louvain (EPL) in Belgium, who is the editor-in-chief of Al4S, says he is “very excited” by AI’s transformative potential for science. “It is really disrupting the way research is being performed. AI excels at processing and analyzing large volumes of data quickly and accurately,” he says. “This capability enables researchers to gain insights – or identify patterns – that were previously difficult or impossible to obtain.

Rignanese adds that AI is also accelerating simulations making them “closer to the real world” and large language models and neuro-linguistic programming are changing our way to apprehend the existing literature. “Generative AI holds a lot of promises,” he says.

Rignanese, whose research focuses on investigating and designing advanced materials for electronics, energy storage and energy production in which he uses first-principles simulations and machine learning, says that AI4S “not only targets high standards in terms of quality of the published research” but that it also recognizes the importance of sharing data and software.

The journal recognizes the rapid and multifaceted growth of AI. Notably, in 2025 both the chemistry and physics Nobel prizes went to the science of AI. Research funding is also increasing, with both the US Department of Energy (DOE) and National Science Foundation (NSF) allocating more resources to this field in 2025 than ever before.

In China, AI is emerging as a major priority in which the science community is poised to become a driving force in global development. Reflecting this, AI4S is co-led by editor-in-chief Weihua Wang from the Songshan Lake Materials Laboratory. Songshan Lake Materials Laboratory is a new and leading institute for advanced materials research and innovation that is preparing to focus intensively on AI in the near future.

“Our primary goal with AI for Science is to provide a global forum where scientists can share their cutting-edge research, innovative methodologies, and transformative perspectives,” says Wang The field of AI in scientific research is not only expanding but also evolving at an unprecedented pace, making it vital for professionals to connect and collaborate.”

Wang expressed his optimistic vision for the future of AI in scientific research. “We want AI for Science to be instrumental in creating a more connected and collaborative global community of researchers,” he adds. “Together, we can harness the transformative power of AI to address some of the world’s most pressing scientific challenges and make the field even more impactful.”

Wang notes that the inspiration behind the journal is the potential impact of AI on scientific discovery. “We believe that AI has the power to revolutionize the way research is conducted,” he says. “By providing a space for open dialogue and collaboration, we hope to enable scientists to leverage AI technologies more effectively, ultimately accelerating innovation and improving outcomes across various fields.”

The scope of AI4S is broad yet focused, catering to a wide array of interests within the scientific community. Wang explains that the journal covers various topics. These include: AI algorithms adapted for scientific applications; AI software and toolkits designed specifically for researchers; the importance of AI-ready datasets; and the development of embodied AI systems. These topics aim to bridge the gap between AI technology and its applications across disciplines like materials science, biology, and chemistry.

AI4S is also setting new standards for author experience. Submissions are reviewed by an international editorial board together with the support of a 22-member advisory board composed of leading scientists and engineers. The journal also promises a rapid turnaround in which once accepted, articles are published within 24 hours and assigned a citable digital object identifier (DOI). In addition, from 2025 to 2027, all article publication charges are fully waived, paid for by the Songshan Lake Materials Laboratory.

AI4S joins a growing number of journals focused on machine learning and AI. This includes the IOP’s Machine Learning Series: Machine Learning: Science and Technology; Machine Learning: Engineering; Machine Learning: Earth; and Machine Learning: Health.

“AI is a new approach to science which is really exciting and holds a lot of promises,” adds Rignanese, “so I am convinced that there is room for a journal accompanying this new paradigm.”

For more information or to submit your manuscript, click here.

The post New open-access journal <I>AI for Science</I> aims to revolutionize scientific discovery appeared first on Physics World.

  •  

Struggling in politics? Consider a war – the media will help | Margaret Sullivan

Trump’s Iran strike knocked everything else out of the news, including the Minnesota shootings – and it was little surprise

“You furnish the pictures. I’ll furnish the war,” was the storied response of the newspaper magnate William Randolph Hearst to Frederic Remington after the illustrator was sent to Cuba to cover an insurrection and cabled back to the boss that there was little going on.

Much has changed since that famous (if true) exchange of the late 19th century, in the heyday of sensationalism known as yellow journalism.

Margaret Sullivan is a Guardian US columnist writing on media, politics and culture

Continue reading...

© Photograph: Mehmet Eser/ZUMA Press Wire/Shutterstock

© Photograph: Mehmet Eser/ZUMA Press Wire/Shutterstock

  •  

Thinking of switching research fields? Beware the citation ‘pivot penalty’ revealed by new study

Scientists who switch research fields suffer a drop in the impact of their new work – a so-called “pivot penalty”. That is according to a new analysis of scientific papers and patents, which finds that the pivot penalty increases the further away a researcher shifts from their previous topic of research.

The analysis has been carried out by a team led by Dashun Wang and Benjamin Jones of Northwestern University in Illinois. They analysed more than 25 million scientific papers published between 1970 and 2015 across 154 fields as well as 1.7 million US patents across 127 technology classes granted between 1985 and 2020.

To identify pivots and quantify how far a scientist moves from their existing work, the team looked at the scientific journals referenced in a paper and compared them with those cited by previous work. The more the set of journals referenced in the main work diverged from those usually cited, the larger the pivot. For patents, the researchers used “technological field codes” to measure pivots.

Larger pivots are associated with fewer citations and a lower propensity for high-impact papers, defined as those in the top 5% of citations received in their field and publication year. Low-pivot work – moving only slightly away from the typical field of research – led to a high-impact paper 7.4% of the time, yet the highest-pivot shift resulted in a high-impact paper only 2.2% of the time. A similar trend was seen for patents.

When looking at the output of an individual researcher, low-pivot work was 2.1% more likely to have a high-impact paper while high-pivot work was 1.8% less likely to do so. The study found the pivot penalty to be almost universal across scientific fields and it persists regardless of a scientist’s career stage, productivity and collaborations.

COVID impact

The researchers also studied the impact of COVID-19, when many researchers pivoted to research linked to the pandemic. After analysing 83,000 COVID-19 papers and 2.63 million non-COVID papers published in 2020, they found that COVID-19 research was not immune to the pivot penalty. Such research had a higher impact than average, but the further a scientist shifted from their previous work to study COVID-19 the less impact the research had.

“Shifting research directions appears both difficult and costly, at least initially, for individual researchers,” Wang told Physics World. He thinks, however, that researchers should not avoid change but rather “approach it strategically”. Researchers should, for example, try anchoring their new work in the conventions of their prior field or the one they are entering.

To help researchers pivot, Wang says research institutions should “acknowledge the friction” and not “assume that a promising researcher will thrive automatically after a pivot”. Instead, he says, institutions need to design support systems, such as funding or protected time to explore new ideas, or pairing researchers with established scholars in the new field.

The post Thinking of switching research fields? Beware the citation ‘pivot penalty’ revealed by new study appeared first on Physics World.

  •  

Why I stopped submitting my work to for-profit publishers

Peer review is a cornerstone of academic publishing. It is how we ensure that published science is valid. Peer review, by which researchers judge the quality of papers submitted to journals, stops pseudoscience from being peddled as equivalent to rigorous research. At the same time, the peer-review system is under considerable strain as the number of journal articles published each year increases, jumping from 1.9 million in 2016 to 2.8 million in 2022, according to Scopus and Web of Science.

All these articles require experienced peer reviewers, with papers typically taking months to go through peer review. This cannot be blamed alone on the time taken to post manuscripts and reviews back and forth between editors and reviewers, but instead is a result of high workloads and, fundamentally, how busy everyone is. Given peer reviewers need to be expert in their field, the pool of potential reviewers is inherently limited. A bottleneck is emerging as the number of papers grows quicker than the number of researchers in academia.

Scientific publishers have long been central to managing the process of peer review. For anyone outside academia, the concept of peer review may seem illogical given that researchers spend their time on it without much acknowledgement. While initiatives are in place to change this such as outstanding-reviewer awards and the Web of Science recording reviewer data, there is no promise that such recognition will be considered when looking for permanent positions or applying for promotion.

The impact of open access

Why, then, do we agree to review? As an active researcher myself in quantum physics, I peer-reviewed more than 40 papers last year and I’ve always viewed it as a duty. It’s a necessary time-sink to make our academic system function, to ensure that published research is valid and to challenge questionable claims. However, like anything people do out of a sense of duty, inevitably there are those who will seek to exploit it for profit.

Many journals today are open access, in which fees, known as article-processing charges, are levied to make the published work freely available online. It makes sense that costs need to be imposed – staff working at publishing companies need paying; articles need editing and typesetting; servers need be maintained and web-hosting fees have to be paid. Recently, publishers have invested heavily in digital technology and developed new ways to disseminate research to a wider audience.

Open access, however, has encouraged some publishers to boost revenues by simply publishing as many papers as possible. At the same time, there has been an increase in retractions, especially of fabricated or manipulated manuscripts sold by “paper mills”. The rise of retractions isn’t directly linked to the emergence of open access, but it’s not a good sign, especially when the academic publishing industry reports profit margins of roughly 40% – higher than many other industries. Elsevier, for instance, publishes nearly 3000 journals and in 2023 its parent company, Relx, recorded a profit of £1.79bn. This is all money that was either paid in open-access fees or by libraries (or private users) for journal subscriptions but ends up going to shareholders rather than science.

It’s important to add that not all academic publishers are for-profit. Some, like the American Physical Society (APS), IOP Publishing, Optica, AIP Publishing and the American Association for the Advancement of Science – as well as university presses – are wings of academic societies and universities. Any profit they make is reinvested into research, education or the academic community. Indeed, IOP Publishing, AIP Publishing and the APS have formed a new “purpose-led publishing” coalition, in which the three publishers confirm that they will continue to reinvest the funds generated from publishing back into research and “never” have shareholders that result in putting “profit above purpose”.

But many of the largest publishers – the likes of Springer Nature, Elsevier, Taylor and Francis, MDPI and Wiley – are for-profit companies and are making massive sums for their shareholders. Should we just accept that this is how the system is? If not, what can we do about it and what impact can we as individuals have on a multi-billion-dollar industry? I have decided that I will no longer review for, nor submit my articles (when corresponding author) to, any for-profit publishers.

I’m lucky in my field that I have many good alternatives such as the arXiv overlay journal Quantum, IOP Publishing’s Quantum Science and Technology, APS’s Physical Review X Quantum and Optica Quantum. If your field doesn’t, then why not push for them to be created? We may not be able to dismantle the entire for-profit publishing industry, but we can stop contributing to it (especially those who have a permanent job in academia and are not as tied down by the need to publish in high impact factor journals). Such actions may seem small, but together can have an effect and push to make academia the environment we want to be contributing to. It may sound radical to take change into your own hands, but it’s worth a try. You never know, but it could help more money make its way back into science.

The post Why I stopped submitting my work to for-profit publishers appeared first on Physics World.

  •