Particle and nuclear physics: quirky favourites from 2025
Particle and nuclear physics evokes evokes images of huge accelerators probing the extremes of matter. But in this round-up of my favourite research of 2025 I have chosen five stories in which particle and nuclear physics forms the basis for a range of quirky and fascinating research from astrophysics to archaeology.
CERN experiment sheds light on missing blazar radiation

My first pick involves simulating the vast cosmic plasma in the lab. Blazars are extremely bright galaxies that are powered by supermassive black holes. They emit intense jets of radiation, including teraelectronvolt gamma rays – which can be detected by astronomers if a jet happens to point at Earth. As these high-energy photons travel through intergalactic space, they interact with background starlight, producing numerous electron–positron pairs. These pairs should, in theory, generate gigaelectronvolt gamma rays – but this secondary radiation has never been observed. One explanation is that intergalactic magnetic fields deflect these pairs and the resulting gamma rays away from our line of sight. However, there is no conclusive evidence for such fields. Another theory is that plasma instabilities in the sparse intergalactic medium could dissipate the energy of the pair beams. Now, physicists working on the Fireball experiment at CERN have simulated the effect of plasma instabilities by firing a beam of electron–positron pairs through a metre-long argon plasma. They found that plasma instabilities are too weak to account for the missing gamma radiation – strengthening the case for the existence of primordial intergalactic magnetic fields.
Portable source could produce high-energy muon beams
A compact source of muons could soon be discovering hidden chambers in ancient pyramids. Muons are subatomic particles similar to electrons but 200 times heavier. They are produced in copious amounts in the atmosphere by cosmic rays. These cosmic muons can penetrate long distances into materials and are finding increasing use in “muon tomography” – a technique that has imaged the interiors of huge objects such as volcanoes, pyramids and nuclear reactors. One downside of muon tomography is that muons are always vertically incident, limiting opportunities for imaging. While beams of muons can be made in accelerators, these are large and expensive facilities – and the direction of such beams are also fixed. Now, physicists at Lawrence Berkeley National Laboratory have demonstrated a compact, and potentially portable method for generating high-energy muon beams using laser plasma acceleration. It uses an ultra-intense, tightly focused laser pulse to accelerate electrons in a short plasma channel. These electrons then strike a metal target creating a muon beam. With more work, compact and portable muon sources could be developed, leading to new possibilities for non-destructive imaging in archaeology, geology, and nuclear safety.
Radioactive BEC could be a ‘superradiant neutrino laser’
Could a “superradiant neutrino laser” be created using radioactive atoms in an ultracold Bose–Einstein condensate (BEC)? The answer is “maybe”, according to theoretical work by two physicists in the US. Their proposal involves creating a BEC of rubidium-83, which undergoes beta decay involving the emission of neutrinos. Unlike photons, neutrinos are fermions and therefore cannot form the basis of conventional laser. However, if the atoms in the BEC are close enough together, quantum interactions between the atomic nuclei could accelerate beta decay and create a coherent, laser-like burst of neutrinos. This is a well-known phenomenon called superradiance. While the idea could be tested using existing technologies for making BECs, it would be a challenge to deploy radioactive rubidium in a conventional atomic physics lab. Another drawback is that there are no obvious applications for a neutrino laser – at least for now. However, the very idea of a neutrino laser is so cool that I am hoping that someone will try to build one soon!
Antimatter could be transported by road

If you happen to be driving between Geneva and Dusseldorf in the future, you might just overtake a shipment of antimatter. It will be on its way to an experiment that could solve some of the biggest mysteries in physics – including why there is much more matter than antimatter in the universe. While antielectrons (positrons) can be created in a small lab, antiprotons can only be created at large and expensive accelerators. This limits where antimatter experiments can be done. But now, physicists on the BASE collaboration at CERN have shown that it should be possible to transport antiprotons by road. Protons stood in for antiprotons in their demonstration and the particles were held in an electromagnetic trap at cryogenic temperatures and ultralow pressure. By transporting their BASE-STEP system around CERN’s Meyrin site, they showed it was stable and robust enough to handle the rigors of road travel. The system will now be re-configured to transport antiprotons about 700 km to Germany’s Heinrich Heine University. There, physicists hope to search for charge–parity–time (CPT) violations in protons and antiprotons with a precision at least 100 times higher than is currently possible at CERN. The BASE collaboration is also cited in our Top 10 Breakthroughs of 2025 for their quantum control of a single antiproton.
Solid-state nuclear clock ticks ever closer
Solid quartz crystals revolutionized time keeping in the 20th century, so could solid-state nuclear clocks soon do the same? Today, the best timekeepers use the light emitted in atomic transitions. In principle, even better clocks could be made using very-low-energy gamma-rays emitted in some nuclear transitions. Nuclei are much smaller than atoms and these transitions are governed by the strong force. This means that such nuclear clocks would be far less susceptible to performance-degrading electromagnetic noise. And unlike atomic clocks, the nuclei could be embedded in solids – which would greatly simplify clock design. Thorium-229 shows great promise as a clock nucleus but it has two practical shortcomings: it is radioactive and extremely expensive. The solution to both of these problems is a clock design that uses only a tiny amount of thorium-229. Now researchers in the US have shown that physical vapour deposition can used to create extremely thin films of thorium tetrafluoride. Characterization using a vacuum ultraviolet laser confirmed the accessibility of the clock transition – but its lifetime was shorter and the signal less intense than measured in thorium-doped crystals. However, the researchers believe that these unexpected results should not dissuade those aiming to build nuclear clocks.
The post Particle and nuclear physics: quirky favourites from 2025 appeared first on Physics World.














