↩ Accueil

Vue lecture

Short-lived eclipsing binary pulsar spotted in Milky Way

Astronomers in China have observed a pulsar that becomes partially eclipsed by an orbiting companion star every few hours. This type of observation is very rare and could shed new light on how binary star systems evolve.

While most stars in our galaxy exist in pairs, the way these binary systems form and evolve is still little understood. According to current theories, when two stars orbit each other, one of them may expand so much that its atmosphere becomes large enough to encompass the other. During this “envelope” phase, mass can be transferred from one star to the other, causing the stars’ orbit to shrink over a period of around 1000 years. After this, the stars either merge or the envelope is ejected.

In the special case where one star in the pair is a neutron star, the envelope-ejection scenario should, in theory, produce a helium star that has been “stripped” of much of its material and a “recycled” millisecond pulsar – that is, a rapidly spinning neutron star that flashes radio pulses hundreds of times per second. In this type of binary system, the helium star can periodically eclipse the pulsar as it orbits around it, blocking its radio pulses and preventing us from detecting them here on Earth. Only a few examples of such a binary system have ever been observed, however, and all previous ones were in nearby dwarf galaxies called the Magellanic Clouds, rather than our own Milky Way.

A special pulsar

Astronomers led by Jinlin Han from the National Astronomical Observatories of China say they have now identified the first system of this type in the Milky Way. The pulsar in the binary, denoted PSR J1928+1815, had been previously identified using the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during the FAST Galactic Plane Pulsar Snapshot survey. These observations showed that PSR J1928+1815 has a spin period of 10.55 ms, which is relatively short for a pulsar of this type and suggests it had recently sped up by accreting mass from a companion.

The researchers used FAST to observe this suspected binary system at radio frequencies ranging from 1.0 to 1.5 GHz over a period of four and a half years. They fitted the times that the radio pulses arrived at the telescope with a binary orbit model to show that the system has an eccentricity of less than 3 × 10−5. This suggests that the pulsar and its companion star are in a nearly circular orbit. The diameter of this orbit, Han points out, is smaller than that of our own Sun, and its period – that is, the time it takes the two stars to circle each other – is correspondingly short, at 3.6 hours. For a sixth of this time, the companion star blocks the pulsar’s radio signals.

The team also found that the rate at which this orbital period is changing (the so-called spin period derivative) is unusually high for a millisecond-period pulsar, at 3.63 × 10−18 s s−1 .This shows that energy is rapidly being lost from the system as the pulsar spins down.

“We knew that PSR J1928+1815 was special from November 2021 onwards,” says Han. “Once we’d accumulated data with FAST, one of my students, ZongLin Yang, studied the evolution of such binaries in general and completed the timing calculations from the data we had obtained for this system. His results suggested the existence of the helium star companion and everything then fell into place.”

Short-lived phenomenon

This is the first time a short-life (107 years) binary consisting of a neutron star and a helium star has ever been detected, Han tells Physics World. “It is a product of the common envelope evolution that lasted for only 1000 years and that we couldn’t observe directly,” he says.

“Our new observation is the smoking gun for long-standing binary star evolution theories, such as those that describe how stars exchange mass and shrink their orbits, how the neutron star spins up by accreting matter from its companion and how the shared hydrogen envelope is ejected.”

The system could help astronomers study how neutron stars accrete matter and then cool down, he adds. “The binary detected in this work will evolve to become a system of two compact stars that will eventually merge and become a future source of gravitational waves.”

Full details of the study are reported in Science.

The post Short-lived eclipsing binary pulsar spotted in Milky Way appeared first on Physics World.

  •  

How quantum sensors could improve human health and wellbeing

As the world celebrates the 2025 International Year of Quantum Science and Technology, it’s natural that we should focus on the exciting applications of quantum physics in computing, communication and cryptography. But quantum physics is also set to have a huge impact on medicine and healthcare. Quantum sensors, in particular, can help us to study the human body and improve medical diagnosis – in fact, several systems are close to being commercialized.

Quantum computers, meanwhile, could one day help us to discover new drugs by providing representations of atomic structures with greater accuracy and by speeding up calculations to identify potential drug reactions. But what other technologies and projects are out there? How can we forge new applications of quantum physics in healthcare and how can we help discover new potential use cases for the technology?

Those are the some of the questions tackled in a recent report, on which this Physics World article is based, published by Innovate UK in October 2024. Entitled Quantum for Life, the report aims to kickstart new collaborations by raising awareness of what quantum physics can do for the healthcare sector. While the report says quite a bit about quantum computing and quantum networking, this article will focus on quantum sensors, which are closer to being deployed.

Sense about sensors

The importance of quantum science to healthcare isn’t new. In fact, when a group of academics and government representatives gathered at Chicheley Hall back in 2013 to hatch plans for the UK’s National Quantum Technologies Programme, healthcare was one of the main applications they identified. The resulting £1bn programme, which co-ordinated the UK’s quantum-research efforts, was recently renewed for another decade and – once again – healthcare is a key part of the remit.

As it happens, most major hospitals already use quantum sensors in the form of magnetic resonance imaging (MRI) machines. Pioneered in the 1970s, these devices manipulate the quantum spin states of hydrogen atoms using magnetic fields and radio waves. By measuring how long those states take to relax, MRI can image soft tissues, such as the brain, and is now a vital part of the modern medicine toolkit.

While an MRI machine measures the quantum properties of atoms, the sensor itself is classical, essentially consisting of electromagnetic coils that detect the magnetic flux produced when atomic spins change direction. More recently, though, we’ve seen a new generation of nanoscale quantum sensors that are sensitive enough to detect magnetic fields emitted by a target biological system. Others, meanwhile, consist of just a single atom and can monitor small changes in the environment.

There are lots of different quantum-based companies and institutions working in the healthcare sector.

As the Quantum for Life report shows, there are lots of different quantum-based companies and institutions working in the healthcare sector. There are also many promising types of quantum sensors, which use photons, electrons or spin defects within a material, typically diamond. But ultimately what matters is what quantum sensors can achieve in a medical environment.

Quantum diagnosis

While compiling the report, it became clear that quantum-sensor technologies for healthcare come in five broad categories. The first is what the report labels “lab diagnostics”, in which trained staff use quantum sensors to observe what is going on inside the human body. By monitoring everything from our internal temperature to the composition of cells, the sensors can help to identify diseases such as cancer.

Currently, the only way to definitively diagnose cancer is to take a sample of cells – a biopsy – and examine them under a microscope in a laboratory. Biopsies are often done with visual light but that can damage a sample, making diagnosis tricky. Another option is to use infrared radiation. By monitoring the specific wavelengths the cells absorb, the compounds in a sample can be identified, allowing molecular changes linked with cancer to be tracked.

Unfortunately, it can be hard to differentiate these signals from background noise. What’s more, infrared cameras are much more expensive than those operating in the visible region. One possible solution is being explored by Digistain, a company that was spun out of Imperial College, London, in 2019. It is developing a product called EntangleCam that uses two entangled photons – one infrared and one visible (figure 1).

1 Entangled thoughts

Diagram of a laser beam passing through a diamond, where it is split into two: a beam directed at a cancer cell and a beam that enters a single photon detector
a (Adapted from Quantum for Life: How UK Life Sciences and Healthcare Can Benefit from Quantum Technologies by IOP Publishing)

Two false-colour images of cancer cells – one in purple on beige background, one in bright greens, reds and yellows on black background
b (Courtesy: Digistain)

a One way in which quantum physics is benefiting healthcare is through entangled photons created by passing laser light through a nonlinear crystal (left). Each laser photon gets converted into two lower-energy photons – one visible, one infrared – in a process called spontaneous parametric down conversion. In technology pioneered by the UK company Digistain, the infrared photon can be sent through a sample, with the visible photon picked up by a detector. As the photons are entangled, the visible photon gives information about the infrared photon and the presence of, say, cancer cells. b Shown here are cells seen with traditional stained biopsy (left) and with Digistain’s method (right).

If the infrared photon is absorbed by, say, a breast cancer cell, that immediately affects the visible photon with which it is entangled. So by measuring the visible light, which can be done with a cheap, efficient detector, you can get information about the infrared photon – and hence the presence of a potential cancer cell (Phys. Rev. 108 032613). The technique could therefore allow cancer to be quickly diagnosed before a tumour has built up, although an oncologist would still be needed to identify the area for the technique to be applied.

Point of care

The second promising application of quantum sensors lies in “point-of-care” diagnostics. We all became familiar with the concept during the COVID-19 pandemic when lateral-flow tests proved to be a vital part of the worldwide response to the virus. The tests could be taken anywhere and were quick, simple, reliable and relatively cheap. Something that had originally been designed to be used in a lab was now available to most people at home.

Quantum technology could let us miniaturize such tests further and make them more accurate, such that they could be used at hospitals, doctor’s surgeries or even at home. At the moment, biological indicators of disease tend to be measured by tagging molecules with fluorescent markers and measuring where, when and how much light they emit. But because some molecules are naturally fluorescent, those measurements have to be processed to eliminate the background noise.

One emerging quantum-based alternative is to characterize biological samples by measuring their tiny magnetic fields. This can be done, for example, using diamond specially engineered with nitrogen-vacancy (NV) defects. Each is made by removing two carbon atoms from the lattice and implanting a nitrogen atom in one of the gaps, leaving a vacancy in the other. Behaving like an atom with discrete energy levels, each defect’s spin state is influenced by the local magnetic field and can be “read out” from the way it fluoresces.

One UK company working in this area is Element Six. It has joined forces with the US-based firm QDTI in the US to make a single-crystal diamond-based device that can quickly identify biomarkers in blood plasma, cerebrospinal fluid and other samples extracted from the body. The device detects magnetic fields produced by specific proteins, which can help identify diseases in their early stages, including various cancers and neurodegenerative conditions like Alzheimer’s. Another firm using single-crystal diamond to detect cancer cells is Germany-based Quantum Total Analysis Systems (QTAS).

Matthew Markham, a physicist who is head of quantum technologies at Element Six, thinks that healthcare has been “a real turning point” for the company. “A few years ago, this work was mostly focused on academic problems,” he says. “But now we are seeing this technology being applied to real-world use cases and that it is transitioning into industry with devices being tested in the field.”

An alternative approach involves using tiny nanometre-sized diamond particles with NV centres, which have the advantage of being highly biocompatible. QT Sense of the Netherlands, for example, is using these nanodiamonds to build nano-MRI scanners that can measure the concentration of molecules that have an intrinsic magnetic field. This equipment has already been used by biomedical researchers to investigate single cells (figure 2).

2 Centre of attention

Artist's illustration of a diamond with light entering and exiting, plus a zoom in to show the atomic structure of a nitrogen-vacancy defect
(Courtesy: Element Six)

A nitrogen-vacancy defect in diamond – known as an NV centre – is made by removing two carbon atoms from the lattice and implanting a nitrogen atom in one of the gaps, leaving a vacancy in the other. Using a pulse of green laser light, NV centres can be sent from their ground state to an excited state. If the laser is switched off, the defects return to their ground state, emitting a visible photon that can be detected. However, the rate at which the fluorescent light drops while the laser is off depends on the local magnetic field. As companies like Element Six and QTSense are discovering, NV centres in diamond are great way of measuring magnetic fields in the human body especially as the surrounding lattice of carbon atoms shields the NV centre from noise.

Australian firm FeBI Technologies, meanwhile, is developing a device that uses nanodiamonds to measure the magnetic properties of ferritin – a protein that stores iron in the body. The company claims its technology is nine orders of magnitude more sensitive than traditional MRI and will allow patients to monitor the amount of iron in their blood using a device that is accurate and cheap.

Wearable healthcare

The third area in which quantum technologies are benefiting healthcare is what’s billed in the Quantum for Life report as “consumer medical monitoring and wearable healthcare”. In other words, we’re talking about devices that allow people to monitor their health in daily life on an ongoing basis. Such technologies are particularly useful for people who have a diagnosed medical condition, such as diabetes or high blood pressure.

NIQS Tech, for example, was spun off from the University of Leeds in 2022 and is developing a highly accurate, non-invasive sensor for measuring glucose levels. Traditional glucose-monitoring devices are painful and invasive because they basically involve sticking a needle in the body. While newer devices use light-based spectroscopic measurements, they tend to be less effective for patients with darker skin tones.

The sensor from NIQS Tech instead uses a doped silica platform, which enables quantum interference effects. When placed in contact with the skin and illuminated with laser light, the device fluoresces, with the lifetime of the fluorescence depending on the amount of glucose in the user’s blood, regardless of skin tone. NIQS has already demonstrated proof of concept with lab-based testing and now wants to shrink the technology to create a wearable device that monitors glucose levels continuously.

Body imaging

The fourth application of quantum tech lies in body scanning, which allows patients to be diagnosed without needing a biopsy. One company leading in this area is Cerca Magnetics, which was spun off from the University of Nottingham. In 2023 it won the inaugural qBIG prize for quantum innovation from the Institute of Physics, which publishes Physics World, for developing wearable optically pumped magnetometers for magnetoencephalography (MEG), which measure magnetic fields generated by neuronal firings in the brain. Its devices can be used to scan patients’ brains in a comfortable seated position and even while they are moving.

Quantum-based scanning techniques could also help diagnose breast cancer, which is usually done by exposing a patient’s breast tissue to low doses of X-rays. The trouble with such mammograms is that all breasts contain a mix of low-density fatty and other, higher-density tissue. The latter creates a “white blizzard” effect against the dark background, making it challenging to differentiate between healthy tissue and potential malignancies.

That’s a particular problem for the roughly 40% of women who have a higher concentration of higher-density tissue. One alternative is to use molecular breast imaging (MBI), which involves imaging the distribution of a radioactive tracer that has been intravenously injected into a patient. This tracer, however, exposes patients to a higher (albeit still safe) dose of radiation than with a mammogram, which means that patients have to be imaged for a long time to get enough signal.

A solution could lie with the UK-based firm Kromek, which is using cadmium zinc telluride (CZT) semiconductors that produce a measurable voltage pulse from just a single gamma-ray photon. As well as being very efficient over a broad range of X-ray and gamma-ray photon energies, CZTs can be integrated onto small chips operating at room temperature. Preliminary results with Kromek’s ultralow-dose and ultrafast detectors show they work with barely one-eighth of the amount of tracer as traditional MBI techniques.

Four samples of cadmium zinc telluride next to a ruler for scale
Faster and better Breast cancer is often detected with X-rays using mammography but it can be tricky to spot tumours in areas where the breast tissue is dense. One alternative is molecular breast imaging (MBI), which uses a radioactive tracer to “light up” areas of cancer in the breast and works even in dense breast tissue. However, MBI currently exposes patients to more radiation than with mammography, which is where cadmium zinc telluride (CZT) semiconductors, developed by the UK firm Kromek, could help. They produce a measurable voltage pulse from just a single gamma-ray photon, opening the door for “ultralow-dose MBI” – where much clearer images are created with barely one-eighth of the radiation. (Courtesy: Kromek)

“Our prototypes have shown promising results,” says Alexander Cherlin, who is principal physicist at Kromek. The company is now designing and building a full-size prototype of the camera as part of Innovate UK’s £2.5m “ultralow-dose” MBI project, which runs until the end of 2025. It involves Kromek working with hospitals in Newcastle along with researchers at University College London and the University of Newcastle.

Microscopy matters

The final application of quantum sensors to medicine lies in microscopy, which these days no longer just means visible light but everything from Raman and two-photon microscopy to fluorescence lifetime imaging and multiphoton microscopy. These techniques allow samples to be imaged at different scales and speeds, but they are all reaching various technological limits.

Quantum technologies can help us break the technological limits of microscopy.

Quantum technologies can help us break those limits. Researchers at the University of Glasgow, for example, are among those to have used pairs of entangled photons to enhance microscopy through “ghost imaging”. One photon in each pair interacts with a sample, with the image built up by detecting the effect on its entangled counterpart. The technique avoids the noise created when imaging with low levels of light (Sci. Adv. 6 eaay2652).

Researchers at the University of Strathclyde, meanwhile, have used nanodiamonds to get around the problem that dyes added to biological samples eventually stop fluorescing. Known as photobleaching, the effect prevents samples from being studied after a certain time (Roy. Soc. Op. Sci. 6 190589). In the work, samples could be continually imaged and viewed using two-photon excitation microscopy with a 10-fold increase in resolution.

Looking to the future

But despite the great potential of quantum sensors in medicine, there are still big challenges before the technology can be deployed in real, clinical settings. Scalability – making devices reliably, cheaply and in sufficient numbers – is a particular problem. Fortunately, things are moving fast. Even since the Quantum for Life report came out late in 2024, we’ve seen new companies being founded to address these problems.

One such firm is Bristol-based RobQuant, which is developing solid-state semiconductor quantum sensors for non-invasive magnetic scanning of the brain. Such sensors, which can be built with the standard processing techniques used in consumer electronics, allow for scans on different parts of the body. RobQuant claims its sensors are robust and operate at ambient temperatures without requiring any heating or cooling.

Agnethe Seim Olsen, the company’s co-founder and chief technologist, believes that making quantum sensors robust and scalable is vital if they are to be widely adopted in healthcare. She thinks the UK is leading the way in the commercialization of such sensors and will benefit from the latest phase of the country’s quantum hubs. Bringing academia and businesses together, they include the £24m Q-BIOMED biomedical-sensing hub led by University College London and the £27.5m QuSIT hub in imaging and timing led by the University of Birmingham.

Q-BIOMED is, for example, planning to use both single-crystal diamond and nanodiamonds to develop and commercialize sensors that can diagnose and treat diseases such as cancer and Alzheimer’s at much earlier stages of their development. “These healthcare ambitions are not restricted to academia, with many startups around the globe developing diamond-based quantum technology,” says Markham at Element Six.

As with the previous phases of the hubs, allowing for further research encourages start-ups – researchers from the forerunner of the QuSIT hub, for example, set up Cerca Magnetics. The growing maturity of some of these quantum sensors will undoubtedly attract existing medical-technology companies. The next five years will be a busy and exciting time for the burgeoning use of quantum sensors in healthcare.

The post How quantum sensors could improve human health and wellbeing appeared first on Physics World.

  •  

Handheld device captures airborne signs of disease

A sensitive new portable device can detect gas molecules associated with certain diseases by condensing dilute airborne biomarkers into concentrated liquid droplets. According to its developers at the University of Chicago in the US, the device could be used to detect airborne viruses or bacteria in hospitals and other public places, improve neonatal care, and even allow diabetic patients to read glucose levels in their breath, to list just three examples.

Many disease biomarkers are only found in breath or ambient air at levels of a few parts per trillion. This makes them very difficult to detect compared with biomarkers in biofluids such as blood, saliva or mucus, where they are much more concentrated. Traditionally, reaching a high enough sensitivity required bulky and expensive equipment such as mass spectrometers, which are impractical for everyday environments.

Rapid and sensitive identification

Researchers led by biophysicist and materials chemist Bozhi Tian have now developed a highly portable alternative. Their new Airborne Biomarker Localization Engine (ABLE) can detect both non-volatile and volatile molecules in air in around 15 minutes.

This handheld device comprises a cooled condenser surface, an air pump and microfluidic enrichment modules, and it works in the following way. First, air that (potentially) contains biomarkers flows into a cooled chamber. Within this chamber, Tian explains, the supersaturated moisture condenses onto nanostructured superhydrophobic surfaces and forms droplets. Any particles in the air thus become suspended inside the droplets, which means they can be analysed using conventional liquid-phase biosensors such as colorimeteric test strips or electrochemical probes. This allows them to be identified rapidly with high sensitivity.

Tiny babies and a big idea

Tian says the inspiration for this study, which is detailed in Nature Chemical Engineering, came from a visit he made to a neonatal intensive care unit (NICU) in 2021. “Here, I observed the vulnerability and fragility of preterm infants and realized how important non-invasive monitoring is for them,” Tian explains.

“My colleagues and I envisioned a contact-free system capable of detecting disease-related molecules in air. Our biggest challenge was sensitivity and initial trials failed to detect key chemicals,” he remembers. “We overcame this problem by developing a new enrichment strategy using nanostructured condensation and molecular sieves while also exploiting evaporation physics to stabilize and concentrate the captured biomarkers.”

The technology opens new avenues for non-contact, point-of-care diagnostics, he tells Physics World. Possible near-term applications include the early detection of ailments such as inflammatory bowel disease (IBD), which can lead to markers of inflammation appearing in patients’ breath. Respiratory disorders and neurodevelopment conditions in babies could be detected in a similar way. Tian suggests the device could even be used for mental health monitoring via volatile stress biomarkers (again found in breath) and for monitoring air quality in public spaces such as schools and hospitals.

“Thanks to its high sensitivity and low cost (of around $200), ABLE could democratize biomarker sensing, moving diagnostics beyond the laboratory and into homes, clinics and underserved areas, allowing for a new paradigm in preventative and personalized medicine,” he says.

Widespread applications driven by novel physics

The University of Chicago scientists’ next goal is to further miniaturize and optimize the ABLE device. They are especially interested in enhancing its sensitivity and energy efficiency, as well as exploring the possibility of real-time feedback through closed-loop integration with wearable sensors. “We also plan to extend its applications to infectious disease surveillance and food spoilage detection,” Tian reveals.

The researchers are currently collaborating with health professionals to test ABLE in real-world settings such as NICUs and outpatient clinics. In the future, though, they also hope to explore novel physical processes that might improve the efficiency at which devices like these can capture hydrophobic or nonpolar airborne molecules.

According to Tian, the work has unveiled “unexpected evaporation physics” in dilute droplets with multiple components. Notably, they have seen evidence that such droplets defy the limit set by Henry’s law, which states that at constant temperature, the amount of a gas that dissolves in a liquid of a given type and volume is directly proportional to the partial pressure of the gas in equilibrium with the liquid. “This opens a new physical framework for such condensation-driven sensing and lays the foundation for widespread applications in the non-contact diagnostics, environmental monitoring and public health applications mentioned,” Tian says.

The post Handheld device captures airborne signs of disease appeared first on Physics World.

  •  

Astroscale secures UK defense contract for space weather, object-tracking mission

Astroscale, the space junk removal venture, announced a British government contract June 16 worth about $7 million to deploy a pair of cubesats in 2027 to monitor space weather while tracking other objects in low Earth orbit.

The post Astroscale secures UK defense contract for space weather, object-tracking mission appeared first on SpaceNews.

  •  

A Modular Future for Earth Observation: How Domino-E is Unlocking Innovation, Sovereignty, and Access

Imagine a world where Earth observation (EO) is not restricted by complex systems, high costs, or remote institutions. Instead, EO is modular, secure, and sovereign, and is designed to facilitate […]

The post A Modular Future for Earth Observation: How Domino-E is Unlocking Innovation, Sovereignty, and Access appeared first on SpaceNews.

  •  

‘Can’t get you out of my head’: using earworms to teach physics

When I’m sitting in my armchair, eating chocolate and finding it hard to motivate myself to exercise, a little voice in my head starts singing “You’ve got to move it, move it” to the tune of will.i.am’s “I like to move it”. The positive reinforcement and joy of this song as it plays on a loop in my mind propels me out of my seat and onto the tennis court.

Songs like this are earworms – catchy pieces of music that play on repeat in your head long after you’ve heard them. Some tunes are more likely to become earworms than others, and there are a few reasons for this.

To truly hook you in, the music must be repetitive so that the brain can easily finish it. Generally, it is also simple, and has a rising and falling pitch shape. While you need to hear a song several times for it to stick, once it’s wormed its way into your head, some lyrics become impossible to escape – “I just can’t get you out of my head”, as Kylie would say.

In his book Musicophilia, neurologist Oliver Sacks describes these internal music loops as “the brainworms that arrive unbidden and leave only on their own time”. They can fade away, but they tend to lie in wait, dormant until an association sets them off again – like when I need to exercise. But for me as a physics teacher for 16–18 year olds, this fact is more than just of passing interest: I use it in the classroom.

There are some common mistakes students make in physics, so I play songs in class that are linked (sometimes tenuously) to the syllabus to remind them to check their work. Before I continue, I should add that I’m not advocating rote learning without understanding – the explanation of the concept must always come first. But I have found the right earworm can be a great memory aid.

I’ve been a physics teacher for a while, and I’ll admit to a slight bias towards the music of the 1980s and 1990s. I play David Bowie’s “Changes” (which the students associate with the movie Shrek) when I ask the class to draw a graph, to remind them to check if they need to process – or change – the data before plotting. The catchy “Ch…ch…ch…changes” is now the irritating tune they hear when I look over their shoulders to check if they have found, for example, the sine values for Snell’s law, or the square root of tension if looking at the frequency of a stretched wire.

When describing how to verify the law of conservation of momentum, students frequently leave out the mechanism that makes the two trollies stick together after the collision. Naturally, this is an opportunity for me to play Roxy Music’s “Let’s stick together”.

Meanwhile, “Ice ice baby” by Vanilla Ice is obviously the perfect earworm for calculating the specific latent heat of fusion of ice, which is when students often drop parts of the equations because they forget that the ice both melts and changes temperature.

In the experiment where you charge a gold leaf electroscope by induction, pupils often fail to do the four steps in the correct order. I therefore play Shirley Bassey’s “Goldfinger” to remind pupils to earth the disc with their finger. Meanwhile, Spandau Ballet’s bold and dramatic “Gold” is reserved for Rutherford’s gold leaf experiment.

“Pump up the volume” by M|A|R|R|S or Ireland’s 1990 football song “Put ‘em under pressure” are obvious candidates for investigating Boyle’s law. I use “Jump around” by House of Pain when causing a current-carrying conductor in a magnetic field to experience a force.

Some people may think that linking musical lyrics and physics in this way is a waste of time. However, it also introduces some light-hearted humour into the classroom – and I find teenagers learn better with laughter. The students enjoy mocking my taste in music and coming up with suitable (more modern) songs, and we laugh together about the tenuous links I’ve made between lyrics and physics.

More importantly, this is how my memory works. I link phrases or lyrics to the important things I need to remember. Auditory information functions as a strong mnemonic. I am not saying that this works for everyone, but I have heard my students sing the lyrics to each other while studying in pairs or groups. I smile to myself as I circulate the room when I hear them saying phrases like, “No you forgot mass × specific latent heat – remember it’s ‘Ice, ice baby!’ ”.

On their last day of school – after two years of playing these tunes in class – I hold a quiz where I play a song and the students have to link it to the physics. It turns into a bit of a sing-along, with chocolate for prizes, and there are usually a few surprises in there too. Have a go yourself with the quiz below.

Earworms quiz

Can you match the following eight physics laws or experiments with the right song? If you can’t remember the songs, we’ve provided links – but beware, they are earworms!

Law or experiment

  1. Demonstrating resonance with Barton’s pendulums
  2. Joule’s law
  3. The latent heat of vaporization of water
  4. Measuring acceleration due to gravity
  5. The movement caused when a current is applied to a coil in a magnetic field
  6. Measuring the pascal
  7. How nuclear fission releases sustainable amounts of energy
  8. Plotting current versus voltage for a diode in forward bias

Artist and song

Answers will be revealed next month – just come back to this article to find out whether you got them all right.

The post ‘Can’t get you out of my head’: using earworms to teach physics appeared first on Physics World.

  •