Africa is seeking a greater role in the global space economy following the official inauguration of the African Space Agency (AfSA) April 20. The ceremony marked the culmination of a […]
The Japanese firm ispace has suffered another setback after its second attempt to land on the Moon ended in failure yesterday. The Hakuto-R Mission 2, also known as Resilience, failed to touch down near the centre of Mare Frigoris (sea of cold) in the far north of the Moon after a sensor malfunctioned during descent.
Launched on 15 January from the Kennedy Space Center, Florida, aboard a SpaceX Falcon 9 rocket, the craft spent four months travelling to the Moon before it entered lunar orbit on 7 May. It then spent the past month completing several lunar orbital manoeuvres.
During the descent phase, the 2.3 m-high lander began a landing sequence that involved firing its main propulsion system to gradually decelerate and adjust its attitude. ispace says that the lander was confirmed to be nearly vertical but then the company lost communication with the craft.
The firm concludes that the laser rangefinder experienced delays attempting to measure the distance to the lunar surface during descent, meaning that it was unable to decelerate sufficiently to carry out a soft landing.
“Given that there is currently no prospect of a successful lunar landing, our top priority is to swiftly analyze the telemetry data we have obtained thus far and work diligently to identify the cause,” noted ispace founder and chief executive officer Takeshi Hakamada in a statement. “We strive to restore trust by providing a report of the findings.”
The mission was planned to have operated for about two weeks. Resilience featured several commercial payloads, worth $16m, including a food-production experiment and a deep-space radiation probe. It also carried a rover, dubbed Tenacious, which was about the size of a microwave oven and would have collected and analyzed lunar regolith.
The rover would have also delivered a Swedish artwork called The Moonhouse – a small red cottage with white corners – and placed it at a “symbolically meaningful” site on the Moon.
Lunar losses
The company’s first attempt to land on the Moon also ended in failure in 2023 when the Hakuto-R Mission 1 crashed landed despite being in a vertical position as it carried out the final approach to the lunar surface.
The issue was put down to a software problem that incorrectly assessed the craft’s altitude during descent.
If the latest attempt was a success, ispace would have joined the US firms Intuitive Machines and Firefly Aerospace that both successfully landed on the Moon last year and in March, respectively.
The second lunar loss also casts doubt on ispace’s plans for further lunar landings with the grand aim of establishing a lunar colony of 1000 inhabitants by the 2040s.
Imagine having seamless mobile broadband access anywhere on Earth, from the most remote deserts and oceans to disaster zones, all without the need for cell towers. That’s the promise of […]
An escalating feud between President Trump and Elon Musk June 5 included threats to cancel SpaceX contracts and decommission spacecraft, although those words have yet to become actions.
It’s one thing to talk about commercial geospatial intelligence and another to see it.At the 2025 GEOINT Symposium in St. Louis last month, companies displayed their latest imagery and discussed […]
China launched a fourth group of satellites for its Guowang low Earth orbit megaconstellation Thursday, but released few details about the payload or objectives.
The chairman of the Senate Commerce Committee unveiled a proposal to add $10 billion to a budget reconciliation bill to offset cuts to NASA human spaceflight and exploration programs.
Sen. Michael Bennet (D-Colo.), a member of the Senate Intelligence Committee, and Sen. Kevin Cramer (R-N.D.), who sits on the Armed Services Committee, introduced the Quad Space Act
This episode of the Physics World Weekly podcast features George Efstathiou and Richard Bond, who share the 2025 Shaw Prize in Astronomy, “for their pioneering research in cosmology, in particular for their studies of fluctuations in the cosmic microwave background (CMB). Their predictions have been verified by an armada of ground-, balloon- and space-based instruments, leading to precise determinations of the age, geometry, and mass-energy content of the universe.”
Bond and Efstathiou talk about how the CMB emerged when the universe was just 380,000 years old and explain how the CMB is observed today. They explain why studying fluctuations in today’s CMB provides a window into the nature of the universe as it existed long ago, and how future studies could help physicists understand the nature of dark matter – which is one of the greatest mysteries in physics.
Efstathiou is emeritus professor of astrophysics at the University of Cambridge in the UK – and Richard Bond is a professor at the Canadian Institute for Theoretical Astrophysics (CITA) and university professor at the University of Toronto in Canada. Bond and Efstathiou share the 2025 Shaw Prize in Astronomy and its $1.2m prize money equally.
This podcast is sponsored by The Shaw Prize Foundation.
The Pentagon’s long war with its own procurement bureaucracy is entering a new phase. The Trump administration has directed an overhaul of defense acquisition by accelerating modernization and embracing commercial […]
In this week's episode of Space Minds Retired Space Force Lt. Gen. John Shaw explains what it was like building a new military branch, the risks of commercial integration and the race to protect U.S. satellites in orbit.
SAN FRANCISCO — Hydrosat announced plans June 5 to gather thermal-infrared imagery with a second satellite launching later this month on the SpaceX Transporter-14 rideshare. VanZyl-2 has four times the […]
The SQMS approach involves placing a superconducting qubit chip (held at temperatures as low as 10–20 mK) inside a three-dimensional superconducting radiofrequency (3D SRF) cavity – a workhorse technology for particle accelerators employed in high-energy physics (HEP), nuclear physics and materials science. In this set-up, it becomes possible to preserve and manipulate quantum states by encoding them in microwave photons (modes) stored within the SRF cavity (which is also cooled to the millikelvin regime).
Put another way: by pairing superconducting circuits and SRF cavities at cryogenic temperatures, SQMS researchers create environments where microwave photons can have long lifetimes and be protected from external perturbations – conditions that, in turn, make it possible to generate quantum states, manipulate them and read them out. The endgame is clear: reproducible and scalable realization of such highly coherent superconducting qubits opens the way to more complex and scalable quantum computing operations – capabilities that, over time, will be used within Fermilab’s core research programme in particle physics and fundamental physics more generally.
Fermilab is in a unique position to turn this quantum technology vision into reality, given its decadal expertise in developing high-coherence SRF cavities. In 2020, for example, Fermilab researchers demonstrated record coherence lifetimes (of up to two seconds) for quantum states stored in an SRF cavity.
“It’s no accident that Fermilab is a pioneer of SRF cavity technology for accelerator science,” explains Sir Peter Knight, senior research investigator in physics at Imperial College London and an SQMS advisory board member. “The laboratory is home to a world-leading team of RF engineers whose niobium superconducting cavities routinely achieve very high quality factors (Q) from 1010 to above 1011 – figures of merit that can lead to dramatic increases in coherence time.”
Moreover, Fermilab offers plenty of intriguing HEP use-cases where quantum computing platforms could yield significant research dividends. In theoretical studies, for example, the main opportunities relate to the evolution of quantum states, lattice-gauge theory, neutrino oscillations and quantum field theories in general. On the experimental side, quantum computing efforts are being lined up for jet and track reconstruction during high-energy particle collisions; also for the extraction of rare signals and for exploring exotic physics beyond the Standard Model.
Collaborate to accumulate SQMS associate scientists Yao Lu (left) and Tanay Roy (right) worked with PhD student Taeyoon Kim (centre) to develop a two-qudit superconducting QPU with a record coherence lifetime (>20 ms). (Courtesy: Hannah Brumbaugh, Fermilab)
Key to success here is an extensive collaborative effort in materials science and the development of novel chip fabrication processes, with the resulting transmon qubit ancillas shaping up as the “nerve centre” of the 3D SRF cavity-based quantum computing platform championed by SQMS. What’s in the works is essentially a unique quantum analogue of a classical computing architecture: the transmon chip providing a central logic-capable quantum information processor and microwave photons (modes) in the 3D SRF cavity acting as the random-access quantum memory.
As for the underlying physics, the coupling between the transmon qubit and discrete photon modes in the SRF cavity allows for the exchange of coherent quantum information, as well as enabling quantum entanglement between the two. “The pay-off is scalability,” says Alexander Romanenko, a senior scientist at Fermilab who leads the SQMS quantum technology thrust. “A single logic-capable processor qubit, such as the transmon, can couple to many cavity modes acting as memory qubits.”
In principle, a single transmon chip could manipulate more than 10 qubits encoded inside a single-cell SRF cavity, substantially streamlining the number of microwave channels required for system control and manipulation as the number of qubits increases. “What’s more,” adds Romanenko, “instead of using quantum states in the transmon [coherence times just crossed into milliseconds], we can use quantum states in the SRF cavities, which have higher quality factors and longer coherence times [up to two seconds].”
In terms of next steps, continuous improvement of the ancilla transmon coherence times will be critical to ensure high-fidelity operation of the combined system – with materials breakthroughs likely to be a key rate-determining step. “One of the unique differentiators of the SQMS programme is this ‘all-in’ effort to understand and get to grips with the fundamental materials properties that lead to losses and noise in superconducting qubits,” notes Knight. “There are no short-cuts: wide-ranging experimental and theoretical investigations of materials physics – per the programme implemented by SQMS – are mandatory for scaling superconducting qubits into industrial and scientifically useful quantum computing architectures.”
Coupled with a superconducting transmon, the two-cell SRF module enables precise manipulation of cavity quantum states (photons) using ultrafast control/readout schemes (allowing for approximately 104 high-fidelity operations within the qubit lifetime). “This represents a significant achievement for SQMS,” claims Yao Lu, an associate scientist at Fermilab and co-lead for QPU connectivity and transduction in SQMS. “We have demonstrated the creation of high-fidelity [>95%] quantum states with large photon numbers [20 photons] and achieved ultra-high-fidelity single-photon entangling operations between modes [>99.9%]. It’s work that will ultimately pave the way to scalable, error-resilient quantum computing.”
Scalable thinking The SQMS multiqudit QPU prototype (above) exploits 3D SRF cavities held at millikelvin temperatures. (Courtesy: Ryan Postel, Fermilab)
Fast scaling with qudits
There’s no shortage of momentum either, with these latest breakthroughs laying the foundations for SQMS “qudit-based” quantum computing and communication architectures. A qudit is a multilevel quantum unit that can be more than two states and, in turn, hold a larger information density – i.e. instead of working with a large number of qubits to scale information processing capability, it may be more efficient to maintain a smaller number of qudits (with each holding a greater range of values for optimized computations).
Scale-up to a multiqudit QPU system is already underway at SQMS via several parallel routes (and all with a modular computing architecture in mind). In one approach, coupler elements and low-loss interconnects integrate a nine-cell multimode SRF cavity (the memory) to a two-cell SRF cavity quantum processor. Another iteration uses only two-cell modules, while yet another option exploits custom-designed multimodal cavities (10+ modes) as building blocks.
One thing is clear: with the first QPU prototypes now being tested, verified and optimized, SQMS will soon move to a phase in which many of these modules will be assembled and put together in operation. By extension, the SQMS effort also encompasses crucial developments in control systems and microwave equipment, where many devices must be synchronized optimally to encode and analyse quantum information in the QPUs.
Along a related coordinate, complex algorithms can benefit from fewer required gates and reduced circuit depth. What’s more, for many simulation problems in HEP and other fields, it’s evident that multilevel systems (qudits) – rather than qubits – provide a more natural representation of the physics in play, making simulation tasks significantly more accessible. The work of encoding several such problems into qudits – including lattice-gauge-theory calculations and others – is similarly ongoing within SQMS.
Taken together, this massive R&D undertaking – spanning quantum hardware and quantum algorithms – can only succeed with a “co-design” approach across strategy and implementation: from identifying applications of interest to the wider HEP community to full deployment of QPU prototypes. Co-design is especially suited to these efforts as it demands sustained alignment of scientific goals with technological implementation to drive innovation and societal impact.
In addition to their quantum computing promise, these cavity-based quantum systems will play a central role in serving both as the “adapters” and low-loss channels at elevated temperatures for interconnecting chip or cavity-based QPUs hosted in different refrigerators. These interconnects will provide an essential building block for the efficient scale-up of superconducting quantum processors into larger quantum data centres.
Quantum insights Researchers in the control room of the SQMS Quantum Garage facility, developing architectures and gates for SQMS hardware tailored toward HEP quantum simulations. From left to right: Nick Bornman, Hank Lamm, Doga Kurkcuoglu, Silvia Zorzetti, Julian Delgado, Hans Johnson (Courtesy: Hannah Brumbaugh)
“The SQMS collaboration is ploughing its own furrow – in a way that nobody else in the quantum sector really is,” says Knight. “Crucially, the SQMS partners can build stuff at scale by tapping into the phenomenal engineering strengths of the National Laboratory system. Designing, commissioning and implementing big machines has been part of the ‘day job’ at Fermilab for decades. In contrast, many quantum computing start-ups must scale their R&D infrastructure and engineering capability from a far-less-developed baseline.”
The last word, however, goes to Romanenko. “Watch this space,” he concludes, “because SQMS is on a roll. We don’t know which quantum computing architecture will ultimately win out, but we will ensure that our cavity-based quantum systems will play an enabling role.”
Scaling up: from qubits to qudits
Left: conceptual illustration of the SQMS Center’s superconducting TESLA cavity coupled to a transmon ancilla qubit (AI-generated). Right: an ancilla qubit with two energy levels – ground ∣g⟩ and excited ∣e⟩ – is used to control a high-coherence (d+1) dimensional qudit encoded in a cavity resonator. The ancilla enables state preparation, control and measurement of the qudit. (Courtesy: Fermilab)
A space station research conference has been canceled and the future of a long-running planetary science conference is in doubt as NASA pulls back support for those events.
Europe is expected to publish a draft law by the end of June to overhaul the regulation of space services, introducing unified rules for companies operating in or selling to the European market.
Here’s how to find reliable information and keep safe during the summer heat and hurricane season following the unprecedented cuts at federal agencies.
Learn about an unlikely strategy for repelling ticks that involves a compound secreted by the skin of donkeys, which may help prevent the spread of Lyme disease.
Since the start of the second Trump administration, NASA’s formal advisory committees have largely been suspended. While the congressionally mandated Aerospace Safety Advisory Committee has continued its work, the NASA […]