↩ Accueil

Vue lecture

Tiny laser delivers high-quality, narrowband light for metrology

A new solid-state laser can make a vast number of precise optical measurements each second, while sweeping across a broad range of optical wavelengths. Created by a team led by Qiang Lin at the University of Rochester in the US, the device can be fully integrated onto a single chip.

Optical metrology is a highly versatile technique that uses light to gather information about the physical properties of target objects. It involves illuminating a sample and measuring the results with great precision – using techniques such as interferometry and spectroscopy. In the 1960s, the introduction of lasers and the coherent light they emit boosted the technique to an unprecedented level of precision. This paved the way for advances ranging from optical clocks, to the detection of gravitational waves.

Yet despite the indispensable role they have played so far, lasers have also created a difficult challenge. To ensure the best possible precision, experimentalists much achieve very tight control over the wavelength, phase, polarization and other properties of the laser light. This is very difficult to do within the tiny solid-state laser diodes that are very useful in metrology.

Currently, the light from laser diodes is improved externally using optical modules. This added infrastructure is inherently bulky and it remains difficult to integrate the entire setup onto chip-scale components – which limits the development of small, fast lasers for metrology.

Two innovations

Lin and colleagues addressed this challenge by designing a new laser with two key components. One is a laser cavity that comprises a thin film of lithium niobate. Thanks to the Pockels effect, this material’s refractive index can vary depending on the strength of an applied electric field. This provides control over the wavelength of the light amplified by the cavity.

The other component is a distributed Bragg reflector (DBR), which is a structure containing periodic grooves that create alternating regions of refractive index. With the right spacing of these grooves, a DBR can strongly reflect light at a single, narrow linewidth, while scattering all other wavelengths. In previous studies, lasers were created by etching a DBR directly onto a lithium niobate film – but due to the material’s optical properties, this resulted in a broad linewidth.

“Instead, we developed an ‘extended DBR’ structure, where the Bragg grating is defined in a silica cladding,” explains team member Mingxiao Li at the University of California Santa Barbara. “This allowed for flexible control over the grating strength, via the thickness and etch depth of the cladding. It also leverages silica’s superior etchability to achieve low scattering strength, which is essential for narrow linewidth operation.”

Using a system of integrated electrodes, Lin’s team can adjust the strength of the electric field they applied to the lithium niobate film. This allows them to rapidly tune the wavelengths amplified by the cavity via the Pockels effect. In addition, they used a specially designed waveguide to control the phase of light passing into the cavity. This design enabled them to tune their laser over a broad range of wavelengths, without needing external correction modules to achieve narrow linewidths.

Narrowband performance

Altogether, the laser demonstrated an outstanding performance on a single chip – producing a clean, single wavelength with very little noise. Most importantly, the light had a linewidth of just 167 Hz – the smallest range achieved to date for a single-chip lithium niobate laser. This exceptional performance enabled the laser to rapidly sweep across a bandwidth of over 10 GHz – equivalent to scanning quintillions of points per second.

“These capabilities translated directly into successful applications,” Li describes. “The laser served as the core light source in a high-speed LIDAR system, measuring the velocity of a target 0.4 m away with better than 2 cm distance resolution. The system supports a velocity measurement as high as Earth’s orbital velocity – around 7.91 km/s – at 1 m.” Furthermore, Lin’s team were able to lock their laser’s frequency with a reference gas cell, integrated directly onto the same chip.

By eliminating the need for bulky control modules, the team’s design could now pave the way for the full miniaturization of optical metrology – with immediate benefits for technologies including optical clocks, quantum computers, self-driving vehicles, and many others.

“Beyond these, the laser’s core advantages – exceptional coherence, multifunctional control, and scalable fabrication – position it as a versatile platform for transformative advances in high-speed communications, ultra-precise frequency generation, and microwave photonics,” Lin says.

The new laser is described in Light: Science & Applications.

The post Tiny laser delivers high-quality, narrowband light for metrology appeared first on Physics World.

  •  

Astronomers capture spectacular ‘thousand colour’ image of the Sculptor Galaxy

Astronomers at the European Southern Observatory’s Very Large Telescope (VLT) have created a thousand colour image of the nearby Sculptor Galaxy.

First discovered by Carloine Herschel in 1783 the spiral galaxy lies 11 million light-years away and is one of the brightest galaxies in the sky.

While conventional images contain only a handful of colours, this new map contains thousands, which helps astronomers to understand the age, composition and motion of the stars, gas and dust within it.

To create the image, researchers observed the galaxy for over 50 hours with the Multi Unit Spectroscopic Explorer (MUSE) instrument on the VLT, which is based at the Paranal Observatory in Chile’s Atacama Desert.

The team then stitched together over 100 exposures to cover an area of the galaxy about 65 000 light-years wide.

The image revealed around 500 planetary nebulae – regions of gas and dust cast off from dying Sun-like stars – that can be used as distance markers to their host galaxies.

“Galaxies are incredibly complex systems that we are still struggling to understand,” notes astronomer Enrico Congiu, lead author of the study. “The Sculptor Galaxy is in a sweet spot – it is close enough that we can resolve its internal structure and study its building blocks with incredible detail, but at the same time, big enough that we can still see it as a whole system.”

Future work will involve understanding how gas flows, changes its composition, and forms stars in the galaxy.  “How such small processes can have such a big impact on a galaxy whose entire size is thousands of times bigger is still a mystery,” adds Congiu.

The post Astronomers capture spectacular ‘thousand colour’ image of the Sculptor Galaxy appeared first on Physics World.

  •  

Delving into the scientific mind, astronomy’s happy accidents, lit science experiments at home, the art of NASA: micro reviews of recent books

The Shape of Wonder: How Scientists Think, Work and Live
By Alan Lightman and Martin Rees

In their delightful new book, cosmologist Martin Rees and physicist and science writer Alan Lightman seek to provide “an honest picture of scientists as people and how they work and think”. The Shape of Wonder does this by exploring the nature of science, examining the role of critical thinking, and looking at how scientific theories are created and revised as new evidence emerges. It also includes profiles of individual scientists, ranging from historical Nobel-prize winners such as physicist Werner Heisenberg and biologist Barbara McClintock, to rising stars like CERN theorist Dorota Grabowska. Matin Durrani

  • 2025 Pantheon Books

Our Accidental Universe: Stories of Discovery from Asteroids to Aliens
By Chris Lintott

TV presenter and physics professor Chris Lintott brings all his charm and wit to his new book Our Accidental Universe. He looks at astronomy through the lens of the human errors and accidents that lead to new knowledge. It’s a loose theme that allows him to skip from the search for alien life to pulsars and the Hubble Space Telescope. Lintott has visited many of the facilities he discusses, and spoken to many people working in these areas, adding a personal touch to his stated aim of elucidating how science really gets done. Kate Gardner

  • 2024 Penguin

Science is Lit: Awesome Electricity and Mad Magnets
By Big Manny (Emanuel Wallace)

Want to feed your child’s curiosity about how things work (and don’t mind creating a mini lab in your house)? Take a look at Awesome Electricity and Mad Magnets, the second in the Science is Lit series by Emanuel Wallace – aka TikTok star “Big Manny”. Wallace introduces four key concepts of physics – force, sound, light and electricity – in an enthusiastic and fun way that’s accessible for 8–12 year olds. With instructions for experiments kids can do at home, and a clear explanation of the scientific process, your child can really experience what it’s like to be a scientist. Sarah Tesh

  • 2025 Puffin
Painting of a grey-white lunar landscape featuring several astronauts and dozens of scientific apparatus
NASA art This concept painting by Robert McCall shows a telescope in a hypothetical lunar observatory, sheltered from the Sun to protect its lens. (Courtesy: Robert McCall)

Space Posters & Paintings: Art About NASA
By Bill Schwartz

Astronomy is the most visually gifted of all the sciences, with endless stunning photographs of our cosmos. But perhaps what sets NASA apart from other space agencies is its art programme, which has existed since 1962. In Space Posters and Paintings: Art about NASA, documentary filmmaker Bill Schwartz has curated a striking collection of nostalgic artworks that paint the history of NASA and its various missions across the solar system and beyond. Particularly captivating are pioneering artist Robert McCall’s paintings of the Gemini and Apollo missions. This large-format coffee book is a perfect purchase for any astronomy buff. Tushna Commissariat

  • 2024 ACC Art Books

The post Delving into the scientific mind, astronomy’s happy accidents, lit science experiments at home, the art of NASA: micro reviews of recent books appeared first on Physics World.

  •  

Desert Works Propulsion Successfully Tests Prototype Cathodes for Turion Space TIE-20 Thruster

New Mexico, June 17, 2025 — Desert Works Propulsion (DWP) has successfully completed initial testing of multiple prototype discharge and neutralizer cathodes developed for Turion Space Corp.’s TIE-20 ion thruster. […]

The post Desert Works Propulsion Successfully Tests Prototype Cathodes for Turion Space TIE-20 Thruster appeared first on SpaceNews.

  •  

US astronomy facing ‘extinction level’ event following Trump’s 2026 budget request

The administration of US president Donald Trump has proposed drastic cuts to science that would have severe consequence for physics and astronomy if passed by the US Congress. The proposal could involve the cancellation of one of the twin US-based gravitational-wave detectors as well as the axing of a proposed next-generation ground-based telescope and a suite of planned NASA mission. Scientific societies, groups of scientists and individuals have expressed their shock over the scale of the reductions.

In the budget request, which represents the start of the budgeting procedure for the year from 1 October, the National Science Foundation (NSF) would see its funding plummet from $9bn to just  $3.9bn – imperilling several significant projects. While the NSF had hoped to support both next-generation ground-based tele­scopes planned by the agency – the Giant Magellan Tele­scope (GMT) and the Thirty Meter Telescope (TMT) – the new budget would only allow one to be supported.

On 12 June the GMT, which is already 40% completed thanks to private funds, received NSF approval confirming that the observatory will advance into its “major facilities final design phase”, one of the final steps before becoming eligible for federal construction funding. The TMT, meanwhile, which is set to be built in Hawaii, has been hit with delays following protests over adding more telescopes to Mauna Kea. In a statement from the TMT International Observatory, it said it was “disappointed that the NSF’s current budget proposal does not include TMT”.

It is also possible that one of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) facilities – one in Hanford, Washington and the other in Livingston, Louisiana – would have to close down after the budget proposes a 39.6% cut to LIGO operations. Having one LIGO facility would significantly cut its ability to identify and localize events that produce gravitational waves.

“This level of cut, if enacted, would drastically reduce the science coming out of LIGO and have long-term negative consequences for gravitational-wave astrophysics,” notes LIGO executive director David Reitze. LIGO officials told Physics World that the cuts would be “extremely punishing to US gravitational wave science” and would mean “layoffs to staff, reduced scientific output, and the loss of scientific leadership in a field that made first detections just under 10 years ago”.

NASA’s science funding, meanwhile, would reduce by 47% year on year, and the agency as a whole would see more than 5500 staff lose their jobs as its workforce gets slashed from 17 391 to just 11 853. NASA would also lose planned missions to Venus, Mars, Jupiter and the asteroid Apophis that will pass close to Earth in 2029. Several scientific missions focusing on planet Earth, meanwhile, would also be axed.

The American Astronomical Society expressed “grave concern” that the cuts to NASA and the NSF “would result in an historic decline of American investment in basic scientific research”. The Planetary Society called the proposed NASA budget “an extinction-level event for the space agency’s most productive, successful and broadly supported activity”. Before the cuts were announced, the Trump administration pulled its nomination of billionaire industrialist Jared Isaacman for NASA administrator after his supporter Elon Musk left his post as head of the “Department of Government Efficiency.”

‘The elephant in the room’

The Department of Energy, meanwhile, will receive a slight increase in its defence-related budget, from the current $34.0bn to next year’s proposed $33.8bn. But its non-defence budget will fall by 26% from $16.83bn to $12.48bn. Michael Kratsios, Trump’s science adviser and head of the White House Office of Science and Technology Policy, sought to justify the administration’s planned cuts in a meeting at the National Academy of Sciences (NAS) on 19 May.

“Spending more money on the wrong things is far worse than spending less money on the right things,” Kratsios noted, adding that the country had received “diminishing returns” on its investments in science over the past four decades and that it now requires “new methods and approaches to supporting research”. He also suggested that research now undertaken at US universities falls short of what he called “gold standard science”, citing “political biases [that] have displaced the vital search for truth”. Universities, he stated, have lost public trust because they have “promoted diversity, equity and inclusion”.

The US science community, however, is unconvinced. “The elephant in the room right now is whether the drastic reductions in research budgets and new research policies across the federal agencies will allow us to remain a research and development powerhouse,” says Marcia McNutt, president of the National Academy of Sciences. “Thus, we are embarking on a radical new experiment in what conditions promote science leadership – with the US being the ‘treatment’ group, and China as the control.”

Former presidential science adviser Neal Lane, now at Rice University, told Physics World that while the US administration appears to value some aspects of scientific research such as AI, quantum, nuclear and biotechnologies, it “doesn’t seem to understand or acknowledge that technological advances and innovation often come from basic research in unlikely fields of science“. He expects the science community to “continue to push back” by writing and visiting members of Congress, many of whom support science, and “by speaking out to the public and encouraging various organizations to do that same”.

Indeed, an open letter by the group Stand Up for Science dated 26 May calls the administration’s stated commitment to “gold standard science” an approach “that will actually undermine scientific rigor and the transparent progress of science”. It would “introduce stifling limits on intellectual freedom in our nation’s laboratories and federal funding agencies”, the letter adds.

As of 13 June, the letter had more than 9250 signatures. Another letter, sent to Jay Bhattachayra, director of the National Institutes of Health (NIH), from some 350 NIH members, almost 100 of whom identified themselves, asserted that they “remain pressured to implement harmful measures” such as halting clinical trials midstream. In the budget request, the NIH would lose about 40%, leaving it with $27.5bn next year. The administration also plans to consolidate the NIH’s 27 institutes into just eight.

A political divide

On the day that the budget was announced, 16 states run by Democratic governors called on a federal court to block cuts in programmes and funding for the NSF. They point out that universities in their states could lose significant income if the cuts go ahead. In fact, the administration’s budget proposal is just that: a proposal. Congress will almost certainly make changes to it before presenting it to Trump for his signature. And while Republicans in the Senate and House of Representatives find it difficult to oppose the administration, science has historically enjoyed support by both Democrats and Republicans.

Despite that, scientists are gearing up for a difficult summer of speculation about financial support. “We are gaming matters at the moment because we are looking at the next budget cycle,” says Peter Littlewood, chair of the University of Chicago’s physics department. “The principal issues now are to bridge postdocs and graduating PhD students, who are in limbo because offers are drying up.” Littlewood says that, while alternative sources of funding such as philanthropic contributions can help, if the proposed government cuts are approved then philanthropy can’t replace federal support. “I’m less worried about whether this or that piece of research gets done than in stabilizing the pipeline, so all our discussions centre around that,” adds Littlewood.

Lane fears the cuts will put people off from careers in science, even in the unlikely event that all the cuts get reversed. “The combination of statements by the president and other administrative officials do considerable harm by discouraging young people born in the US and other parts of the world from pursuing their education and careers in [science] in America,” he says. “That’s a loss for all Americans.”

The post US astronomy facing ‘extinction level’ event following Trump’s 2026 budget request appeared first on Physics World.

  •  

Short-lived eclipsing binary pulsar spotted in Milky Way

Astronomers in China have observed a pulsar that becomes partially eclipsed by an orbiting companion star every few hours. This type of observation is very rare and could shed new light on how binary star systems evolve.

While most stars in our galaxy exist in pairs, the way these binary systems form and evolve is still little understood. According to current theories, when two stars orbit each other, one of them may expand so much that its atmosphere becomes large enough to encompass the other. During this “envelope” phase, mass can be transferred from one star to the other, causing the stars’ orbit to shrink over a period of around 1000 years. After this, the stars either merge or the envelope is ejected.

In the special case where one star in the pair is a neutron star, the envelope-ejection scenario should, in theory, produce a helium star that has been “stripped” of much of its material and a “recycled” millisecond pulsar – that is, a rapidly spinning neutron star that flashes radio pulses hundreds of times per second. In this type of binary system, the helium star can periodically eclipse the pulsar as it orbits around it, blocking its radio pulses and preventing us from detecting them here on Earth. Only a few examples of such a binary system have ever been observed, however, and all previous ones were in nearby dwarf galaxies called the Magellanic Clouds, rather than our own Milky Way.

A special pulsar

Astronomers led by Jinlin Han from the National Astronomical Observatories of China say they have now identified the first system of this type in the Milky Way. The pulsar in the binary, denoted PSR J1928+1815, had been previously identified using the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during the FAST Galactic Plane Pulsar Snapshot survey. These observations showed that PSR J1928+1815 has a spin period of 10.55 ms, which is relatively short for a pulsar of this type and suggests it had recently sped up by accreting mass from a companion.

The researchers used FAST to observe this suspected binary system at radio frequencies ranging from 1.0 to 1.5 GHz over a period of four and a half years. They fitted the times that the radio pulses arrived at the telescope with a binary orbit model to show that the system has an eccentricity of less than 3 × 10−5. This suggests that the pulsar and its companion star are in a nearly circular orbit. The diameter of this orbit, Han points out, is smaller than that of our own Sun, and its period – that is, the time it takes the two stars to circle each other – is correspondingly short, at 3.6 hours. For a sixth of this time, the companion star blocks the pulsar’s radio signals.

The team also found that the rate at which this orbital period is changing (the so-called spin period derivative) is unusually high for a millisecond-period pulsar, at 3.63 × 10−18 s s−1 .This shows that energy is rapidly being lost from the system as the pulsar spins down.

“We knew that PSR J1928+1815 was special from November 2021 onwards,” says Han. “Once we’d accumulated data with FAST, one of my students, ZongLin Yang, studied the evolution of such binaries in general and completed the timing calculations from the data we had obtained for this system. His results suggested the existence of the helium star companion and everything then fell into place.”

Short-lived phenomenon

This is the first time a short-life (107 years) binary consisting of a neutron star and a helium star has ever been detected, Han tells Physics World. “It is a product of the common envelope evolution that lasted for only 1000 years and that we couldn’t observe directly,” he says.

“Our new observation is the smoking gun for long-standing binary star evolution theories, such as those that describe how stars exchange mass and shrink their orbits, how the neutron star spins up by accreting matter from its companion and how the shared hydrogen envelope is ejected.”

The system could help astronomers study how neutron stars accrete matter and then cool down, he adds. “The binary detected in this work will evolve to become a system of two compact stars that will eventually merge and become a future source of gravitational waves.”

Full details of the study are reported in Science.

The post Short-lived eclipsing binary pulsar spotted in Milky Way appeared first on Physics World.

  •