↩ Accueil

Vue lecture

Say hi to Quinnie – the official mascot of the International Year of Quantum Science and Technology

Whether it’s the Olympics or the FIFA World Cup, all big global events need a cheeky, fun mascot. So welcome to Quinnie – the official mascot for the International Year of Quantum Science and Technology (IYQ) 2025.

Unveiled at the launch of the IYQ at the headquarters of UNESCO in Paris on 4 February, Quinnie has been drawn by Jorge Cham, the creator of the long-running cartoon strip PHD Comics.

Quinnie was developed for UNESCO in a collaboration between Cham and Physics Magazine, which is published by the American Physical Society (APS) – one of the founding partners of IYQ.

Image of Quinnie, the mascot for the International Year of Quantum Science and Technology
Riding high Quinnie surfing on a quantum wave function. (Courtesy: Jorge Cham)

“Quinnie represents a young generation approaching quantum science with passion, ingenuity, and energy,” says Physics editor Matteo Rini. “We imagine her effortlessly surfing on quantum-mechanical wave functions and playfully engaging with the knottiest quantum ideas, from entanglement to duality.”

Quinnie is set to appear in a series of animated cartoons that the APS will release throughout the year.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

The post Say hi to Quinnie – the official mascot of the International Year of Quantum Science and Technology appeared first on Physics World.

New class of quasiparticle appears in bilayer graphene

A newly-discovered class of quasiparticles known as fractional excitons offers fresh opportunities for condensed-matter research and could reveal unprecedented quantum phases, say physicists at Brown University in the US. The new quasiparticles, which are neither bosons nor fermions and carry no charge, could have applications in quantum computing and sensing, they say.

In our everyday, three-dimensional world, particles are classified as either fermions or bosons. Fermions such as electrons follow the Pauli exclusion principle, which prevents them from occupying the same quantum state. This property underpins phenomena like the structure of atoms and the behaviour of metals and insulators. Bosons, on the other hand, can occupy the same state, allowing for effects like superconductivity and superfluidity.

Fractional excitons defy this traditional classification, says Jia Leo Li, who led the research. Their properties lie somewhere in between those of fermions and bosons, making them more akin to anyons, which are particles that exist only in two-dimensional systems. But that’s only one aspect of their unusual nature, Li adds. “Unlike typical anyons, which carry a fractional charge of an electron, fractional excitons are neutral particles, representing a distinct type of quantum entity,” he says.

The experiment

Li and colleagues created the fractional excitons using two sheets of graphene – a form of carbon just one atom thick – separated by a layer of another two-dimensional material, hexagonal boron nitride. This layered setup allowed them to precisely control the movement of electrons and positively-charged “holes” and thus to generate excitons, which are pairs of electrons and holes that behave like single particles.

The team then applied a 12 T magnetic field to their bilayer structure. This strong field caused the electrons in the graphene to split into fractional charges – a well-known phenomenon that occurs in the fractional quantum Hall effect. “Here, strong magnetic fields create Landau electronic levels that induce particles with fractional charges,” Li explains. “The bilayer structure facilitates pairing between these positive and negative charges, making fractional excitons possible.”

“Distinct from any known particles”

The fractional excitons represent a quantum system of neutral particles that obey fractional quantum statistics, interact via dipolar forces and are distinct from any known particles, Li tells Physics World. He adds that his team’s study, which is detailed in Nature, builds on prior works that predicted the existence of excitons in the fractional quantum Hall effect (see, for example, Nature Physics 13, 751 2017Nature Physics 15, 898-903 2019Science 375 (6577), 205-209 2022).

The researchers now plan to explore the properties of fractional excitons further. “Our key objectives include measuring the fractional charge of the constituent particles and confirming their anyonic statistics,” Li explains. Studies of this nature could shed light on how fractional excitons interact and flow, potentially revealing new quantum phases, he adds.

“Such insights could have profound implications for quantum technologies, including ultra-sensitive sensors and robust quantum computing platforms,” Li says. “As research progresses, fractional excitons may redefine the boundaries of condensed-matter physics and applied quantum science.”

The post New class of quasiparticle appears in bilayer graphene appeared first on Physics World.

European Space Agency’s Euclid mission spots spectacular Einstein ring

The European Space Agency (ESA) has released a spectacular image of an Einstein ring – a circle of light formed around a galaxy by gravitational lensing. Taken by the €1.4bn Euclid mission, the ring is a result of the gravitational effects of a galaxy located around 590 million light-years from Earth.

Euclid was launched in July 2023 and is currently located in a spot in space called Lagrange Point 2 – a gravitational balance point some 1.5 million kilometres beyond the Earth’s orbit around the Sun. Euclid has a 1.2 m-diameter telescope, a camera and a spectrometer that it uses to plot a 3D map of the distribution of more than two billion galaxies. The images it takes are about four times as sharp as current ground-based telescopes.

Einstein’s general theory of relativity predicts that light will bend around objects in space, so that they focus the light like a giant lens. This gravitational lensing effect is bigger for more massive objects and means we can sometimes see the light from distant galaxies that would otherwise be hidden.

Yet if the alignment is just right, the light from the distant source galaxy bends to form a spectacular ring around the foreground object. In this case, the mass of galaxy NGC 6505 is bending and magnifying the light from a more distant galaxy, which is about 4.42 billion light-years away, into a ring.

Studying such rings can shed light on the expansion of the universe as well as the nature of dark matter.

Euclid’s first science results were released in May 2024, following its first shots of the cosmos in November 2023. Hints of the ring were first spotted in September 2023 when Euclid was being testing with follow-up measurements now revealing it in exquisite detail.

The post European Space Agency’s Euclid mission spots spectacular Einstein ring appeared first on Physics World.

Quantum simulators deliver surprising insights into magnetic phase transitions

Unexpected behaviour at phase transitions between classical and quantum magnetism has been observed in different quantum simulators operated by two independent groups. One investigation was led by researchers at Harvard University and used Rydberg atom as quantum bits (qubits). The other study was led by scientists at  Google Research and involved superconducting qubits. Both projects revealed unexpected deviations from the canonical mechanisms of magnetic freezing, with unexpected oscillations near the phase transition.

A classical magnetic material can be understood as a fluid mixture of magnetic domains that are oriented in opposite directions, with the domain walls in constant motion. As a strengthening magnetic field is applied to the system, the energy associated with a domain wall increases, so the magnetic domains themselves become larger and less mobile. At some point, when the magnetism becomes sufficiently strong, a quantum phase transition occurs, causing the magnetism of the material to become fixed and crystalline: “A good analogy is like water freezing,” says Mikhail Lukin of Harvard University.

The traditional quantitative model for these transitions is the Kibble–Zurek mechanism, which was first formulated to describe cosmological phase transitions in the early universe. It predicts that the dynamics of a system begin to “freeze” when the system gets so close to the transition point that the domains crystallize more quickly than they can come to equilibrium.

“There are some very good theories of various types of quantum phase transitions that have been developed,” says Lukin, “but typically these theories make some approximations. In many cases they’re fantastic approximations that allow you to get very good results, but they make some assumptions which may or may not be correct.”

Highly reconfigurable platform

In their work, Lukin and colleagues utilized a highly reconfigurable platform using Rydberg atom qubits. The system was pioneered by Lukin and others in 2016 to study a specific type of magnetic quantum phase transition in detail. They used a laser to simulate the effect of a magnetic field on the Rydberg atoms, and adjusted the laser frequency to tune the field strength.

The researchers found that, rather than simply becoming progressively larger and less mobile as the field strength increased (a phenomenon called coarsening), the domain sizes underwent unexpected oscillations around the phase transition.

“We were really quite puzzled,” says Lukin. “Eventually we figured out that this oscillation is a sign of a special type of excitation mode similar to the Higgs mode in high-energy physics. This is something we did not anticipate…That’s an example where doing quantum simulations on quantum devices really can lead to new discoveries.”

Meanwhile, the Google-led study used a new approach to quantum simulation with superconducting qubits. Such qubits have proved extremely successful and scalable because they use solid-state technology – and they are used in most of the world’s leading commercial quantum computers such as IBM’s Osprey and Google’s own Willow chips. Much of the previous work using such chips, however, has focused on sequential “digital” quantum logic in which one set of gates is activated only after the previous set has concluded. The long times needed for such calculations allows the effects of noise to accumulate, resulting in computational errors.

Hybrid approach

In the new work, the Google team developed a hybrid analogue–digital approach in which a digital universal quantum gate set was used to prepare well-defined input qubit states. They then switched the processor to analogue mode, using capacitive couplers to tune the interactions between the qubits. In this mode, all the qubits were allowed to operate on each other simultaneously, without the quantum logic being shoehorned into a linear set of gate operations. Finally, the researchers characterized the output by switching back to digital mode.

The researchers used a 69-qubit superconducting system to simulate a similar, but non-identical, magnetic quantum phase transition to that studied by Lukin’s group. They were also puzzled by similar unexpected behaviour in their system. The groups’ subsequently became aware of each other’s work, as Google Research’s Trond Anderson explains: “It’s very exciting to see consistent observations from the Lukin group. This not only provides supporting evidence, but also demonstrates that the phenomenon appears in several contexts, making it extra important to understand”.

Both groups are now seeking to push their research deeper into the exploration of complex many-body quantum physics. The Google group estimates that, to conduct its simulations of the highly entangled quantum states involved with the same level of experimental fidelity would take the US Department of Energy’s Frontier supercomputer – one of the world’s most powerful – more than a million years. The researchers now want to look at problems that are completely intractable classically, such as magnetic frustration. “The analogue–digital approach really combines the best of both worlds, and we’re very excited about this as a new promising direction towards making discoveries in systems that are too complex for classical computers,” says Anderson.

The Harvard researchers are also looking to push their system to study more and more complex quantum systems. “There are many interesting processes where dynamics – especially across a quantum phase transition – remains poorly understood,” says Lukin. “And it ranges from the science of complex quantum materials to systems in high-energy physics such as lattice gauge theories, which are notorious for being hard to simulate classically to the point where people literally give up…We want to apply these kinds of simulators to real open quantum problems and really use them to study the dynamics of these systems.”

The research is described in side-by-side papers in Nature. The Google paper is here and the Harvard paper here.

The post Quantum simulators deliver surprising insights into magnetic phase transitions appeared first on Physics World.

Supermassive black hole displays ‘unprecedented’ X-ray outbursts

An international team of researchers has detected a series of significant X-ray oscillations near the innermost orbit of a supermassive black hole – an unprecedented discovery that could indicate the presence of a nearby stellar-mass orbiter such as a white dwarf.

Optical outburst

The Massachusetts Institute of Technology (MIT)-led team began studying the extreme supermassive black hole 1ES 1927+654 – located around 270 million light years away and about a million times more massive than the Sun – in 2018, when it brightened by a factor of around 100 at optical wavelengths. Shortly after this optical outburst, X-ray monitoring revealed a period of dramatic variability as X-rays dropped rapidly – at first becoming undetectable for about a month, before returning with a vengeance and transforming into the brightest supermassive black hole in the X-ray sky.

“All of this dramatic variability seemed to be over by 2021, as the source appeared to have returned to its pre-2018 state. However, luckily, we continued to watch this source, having learned the lesson that this supermassive black hole will always surprise us. The discovery of these millihertz oscillations was indeed quite a surprise, but it gives us a direct probe of regions very close to the supermassive black hole,” says Megan Masterson, a fifth-year PhD candidate at the MIT Kavli Institute for Astrophysics and Space Research, who co-led the study with MIT’s Erin Kara – alongside researchers based elsewhere in the US, as well as at institutions in Chile, China, Israel, Italy, Spain and the UK.

“We found that the period of these oscillations rapidly changed – dropping from around 18 minutes in 2022 to around seven minutes in 2024. This period evolution is unprecedented, having never been seen before in the small handful of other supermassive black holes that show similar oscillatory behaviour,” she adds.

White dwarf

According to Masterson, one of the key ideas behind the study was that the rapid X-ray period change could be driven by a white dwarf – the compact remnant of a star like our Sun – orbiting around the supermassive black hole close to its event horizon.

“If this white dwarf is driving these oscillations, it should produce a gravitational wave signal that will be detectable with next-generation gravitational wave observatories, like ESA’s Laser Interferometer Space Antenna (LISA),” she says.

To test their hypothesis, the researchers used X-ray data from ESA’s XMM-Newton observatory to detect the oscillations, which allowed them to track how the X-ray brightness changed over time. The findings were presented in mid-January at the 245th meeting of the American Astronomical Society in National Harbor, Maryland, and subsequently reported in Nature.

According to Masterson, these insights into the behaviour of X-rays near a black hole will have major implications for future efforts to detect multi-messenger signals from supermassive black holes.

“We really don’t understand how common stellar-mass companions around supermassive black holes are, but these findings tell us that it may be possible for stellar-mass objects to survive very close to supermassive black holes and produce gravitational wave signals that will be detected with the next-generation gravitational wave observatories,” she says.

Looking ahead, Masterson confirms that the immediate next step for MIT research in this area is to continue to monitor 1ES 1927+654 – with both existing and future telescopes – in an effort to deepen understanding of the extreme physics at play in and around the innermost environments of black holes.

“We’ve learned from this discovery that we should expect the unexpected with this source,” she adds. “We’re also hoping to find other sources like this one through large time-domain surveys and dedicated X-ray follow-up of interesting transients.”

The post Supermassive black hole displays ‘unprecedented’ X-ray outbursts appeared first on Physics World.

❌