Celebrating 10 years of gravitational waves
It was early in the morning of Monday 14 September 2015, exactly 10 years ago, when gravitational waves created from the collision of two black holes 1.3 billion light-years away hit the LIGO detectors in the US. The detections took place just as the two giant interferometers – one in Washington and the other in Louisiana – were being calibrated before the first observational run was due to begin four days later.
In one of those curious accidents of history, staff on duty at the Louisiana detector had gone to bed a few hours before the waves rolled in. If they hadn’t packed in their calibrations for the night, it would have prevented LIGO from making its historic measurement, dubbed GW150914. Of course, it would surely only have been a matter of time until LIGO had spotted its first signal, with more than 200 gravitational-wave events so far detected.
Observing these “ripples in space–time”, which had long been on many physicists’ bucket lists, has over the last decade become almost routine. Most gravitational-wave detections have been binary black-hole mergers, though there have also been a few neutron-star/black-hole collisions and some binary neutron-star mergers too. Gravitational-wave astronomy is now a well-established field not just thanks to LIGO but also Virgo in Italy and KAGRA in Japan.
In fact, physicists are already planning what would be a third-generation gravitational-wave detector. The Einstein Telescope, which could do in a day what took LIGO a decade, could be open by 2035, with three locations vying to host the facility. The Italian island of Sardinia is one option. Saxony in Germany is another, with the third being a site near where Germany, Belgium and the Netherlands meet.
A decision is expected to be made in two years’ time, but whichever site is picked – and assuming the €2bn construction costs can be found – Europe would be installed firmly at the forefront of gravitational-wave research. That’s because the European Space Agency is also planning a space-based gravitational-wave detector called LISA. It is set to start in 2035 – the same year as the Einstein Telescope.
The US has its own third-generation design, dubbed the Cosmic Explorer. But given the turmoil in US science under Donald Trump, it’s far from certain if it’ll ever be built. However, if other nations step in and build a network of such facilities around the world, as researchers hope, we could well be in for a new golden age for gravitational-wave astronomy. That bucket list just got longer.
The post Celebrating 10 years of gravitational waves appeared first on Physics World.