The Compact Muon Solenoid (CMS) Collaboration has made the first measurements of the quantum properties of a family of three “all-charm” tetraquarks that was recently discovered at the Large Hadron Collider (LHC) at CERN. The findings could help shed more light on the properties of the strong nuclear force, which holds protons and neutrons together in nuclei. The result could help us better understand how ordinary matter forms.
In recent years, the LHC has discovered tens of massive particles called hadrons, which are made of quarks bound together by the strong force. Quarks come in six types: up, down, charm, strange, top and bottom. Most observed hadrons comprise two or three quarks (called mesons and baryons, respectively). Physicists have also observed exotic hadrons that comprise four or five quarks. These are the tetraquarks and pentaquarks respectively. Those seen so far usually contain a charm quark and its antimatter counterpart (a charm antiquark), with the remaining two or three quarks being up, down or strange quarks, or their antiquarks.
Identifying and studying tetraquarks and pentaquarks helps physicists to better understand how the strong force binds quarks together. This force also binds protons and neutrons in atomic nuclei.
Physicists are still divided as to the nature of these exotic hadrons. Some models suggest that their quarks are tightly bound via the strong force, so making these hadrons compact objects. Others say that the quarks are only loosely bound. To confuse things further, there is evidence that in some exotic hadrons, the quarks might be both tightly and loosely bound at the same time.
Now, new findings from the CMS Collaboration suggest that tetraquarks are tightly bound, but they do not completely rule out other models.
Measuring quantum numbers
In their work, which is detailed in Nature, CMS physicists studied all-charm tetraquarks. These comprise two charm quarks and two charm antiquarks and were produced by colliding protons at high energies at the LHC. Three states of this tetraquark have been identified at the LHC. These are: X(6900); X(6600); and X(7100), where the numbers denote their approximate mass in millions of electron volts. The team measured the fundamental properties of these tetraquarks, including their quantum numbers: parity (P); charge conjugation (C); angular momentum, and spin (J). P determines whether a particle has the same properties as its spatial mirror image; C whether it has the same properties as its antiparticle; and J, the total angular momentum of the hadron. These numbers provide information on the internal structure of a tetraquark.
The researchers used a version of a well-known technique called angular analysis, which is similar to the technique used to characterize the Higgs boson. This approach focuses on the angles at which the decay products of the all-charm tetraquarks are scattered.
“We call this technique quantum state tomography,” explains CMS team member Chiara Mariotti of the INFN Torino inItaly. “Here, we deduce the quantum state of an exotic state X from the analysis of its decay products. In particular, the angular distributions in the decay X -> J/ψJ/ψ, followed by J/ψ decays into two muons, serve as analysers of polarization of two J/ψ particles,” she explains.
The researchers analysed all-charm tetraquarks produced at the CMS experiment between 2016 and 2018. They calculated that J is likely to be 2 and that P and C are both +1. This combination of properties is expressed as 2++.
Result favours tightly-bound quarks
“This result favours models in which all four quarks are tightly bound,” says particle physicist Timothy Gershon of the UK’s University of Warwick, who was not involved in this study. “However, the question is not completely put to bed. The sample size in the CMS analysis is not sufficient to exclude fully other possibilities, and additionally certain assumptions are made that will require further testing in future.”
Gershon adds, “These include assumptions that all three states have the same quantum numbers, and that all correspond to tetraquark decays to two J/ψ mesons with no additional particles not included in the reconstruction (for example there could be missing photons that have been radiated in the decay).”
Further studies with larger data samples are warranted, he adds. “Fortunately, CMS as well as both the LHCb and the ATLAS collaborations [at CERN] already have larger samples in hand, so we should not have to wait too long for updates.”
Indeed, the CMS Collaboration is now gathering more data and exploring additional decay modes of these exotic tetraquarks. “This will ultimately improve our understanding how this matter forms, which, in turn, could help refine our theories of how ordinary matter comes into being,” Mariotti tells Physics World.
The post Tetraquark measurements could shed more light on the strong nuclear force appeared first on Physics World.