How the STFC Hartree Centre is helping UK industry de-risk quantum computing investment
What role does the Hartree Centre play in quantum computing?
The Hartree Centre gives industry fast-track access to next-generation supercomputing, AI and digital capabilities. We are a “connector” when it comes to quantum computing, helping UK businesses and public-sector organizations to de-risk the early-stage adoption of a technology that is not yet ready to buy off-the-shelf. Our remit spans quantum software, theoretical studies and, ultimately, the integration of quantum computing into existing high-performance computing (HPC) infrastructure and workflows.
What does industry need when it comes to quantum computing?
It’s evident that industry wants to understand the commercial upsides of quantum computing, but doesn’t yet have the necessary domain knowledge and skill sets to take full advantage of the opportunities. By working with the STFC Hartree Centre, businesses can help their computing and R&D teams to bridge that quantum knowledge gap.
How does the interaction with industry partners work?
The Hartree Centre’s quantum computing effort is built around a cross-disciplinary team of scientists and a mix of expertise spanning physics, chemistry, mathematics, computer science and quantum information science. We offer specialist quantum consultancy to clients across industries as diverse as energy, pharmaceuticals and food manufacturing.
How does that work in practice?
We begin by doing the due diligence on the client’s computing challenge, understanding the computational bottlenecks and, where appropriate, translating the research problem so that it can be executed, in whole or in part, on a quantum computer or a mixture of hybrid and quantum computing resources.
What are the operational priorities for the Hartree Centre in quantum computing?
Integrating classical HPC and quantum computing is a complex challenge along three main pathways: infrastructure – bridging fundamentally different hardware architectures; software – workflow management, resource scheduling and organization; and finally applications – adapting and optimizing computing workflows across quantum and classical domains. All of these competencies are mandatory for successful exploitation of quantum computing systems.
So it’s likely these pathways will converge?
Correct. Ultimately, the task is how do we distribute a workload to run on an HPC platform, also on a quantum computer, when many of the algorithms and data streams must loop back and forth between the two systems.
How do you link up classical computing and quantum resources?
We have been addressing this problem with our quantum technology partners – IBM and Pasqal – and a team at Rensselaer Polytechnic in New York. Together, we have introduced a Quantum Resource Management Interface – an open-source tool that supports unified job submission for quantum and classical computing tasks and that’s scalable to cloud computing environments. It’s the “black-box” solution industry has been looking for to bridge the established HPC and emerging quantum domains.

The Hartree Centre has a flagship collaboration with IBM in quantum computing. Can you tell us more?
The Hartree National Centre for Digital Innovation (HNCDI) is a £210m public–private partnership with IBM to create innovative digital technologies spanning HPC, AI, data analytics and quantum computing. HNCDI is the cornerstone of IBM’s quantum technology strategy in the UK and, over the past four years, the collaboration has clocked up more than 30 joint projects with industry. In each of these projects, HNCDI is using quantum computers to tackle problems that are out of reach for classical computers.
Do you have any examples of early wins for HNCDI in quantum?
One is streamlining drug discovery and development. As part of a joint effort with the pharmaceutical firm AstraZeneca and quantum-software developer Algorithmiq, we have improved the accuracy of molecular modelling with the help of quantum computing and, by extension, developed a better understanding of the molecular interactions and processes involved in drug synthesis. Another eye-catching development is Qiskit Machine Learning (ML), an open-source library for quantum machine-learning tasks on quantum hardware and classical simulators. While Qiskit ML started as a proof-of-concept library from IBM, our team at the Hartree Centre has, over the past couple of years, developed it into a modular tool for non-specialist users as well as quantum computational scientists and developers.
So quantum computing could play a big role in healthcare?
Healthcare has yielded productive lines of enquiry, including a proof-of-concept study to demonstrate the potential of quantum machine-learning in cancer diagnostics. Working with Royal Brompton and Harefield Hospitals and Imperial College London, we have evaluated histopathology datasets to categorize different types of breast-cancer cells through AI workflows. It’s research that could eventually lead to better predictions regarding the onset and progression of disease.
And what about other sectors?
We have been collaborating with the German power utility E.ON to study the complex challenges that quantum computing may be able to address in the energy sector – such as strategic infrastructure development, effective energy demand management and streamlined integration of renewable energy sources.
What does the next decade look like for the Hartree Centre’s quantum computing programme?
Longer term, the goal is to enable our industry partners to become at-scale end-users of quantum computing, delivering economic and societal impact along the way. As for our own development roadmap at the Hartree Centre, we are evaluating options for the implementation of a large-scale quantum computing platform to further diversify our existing portfolio of HPC, AI, data science and visual computing technologies.
STFC Hartree Centre: helping UK industry deliver societal impact

The Hartree Centre is part of the Science and Technology Facilities Council (STFC), one of the main UK research councils supporting fundamental and applied initiatives in astronomy, physics, computational science and space science.
Based at the Daresbury Laboratory, part of the Sci-Tech Daresbury research and innovation campus in north-west England, the Hartree Centre has more than 160 scientists and technologists specializing in supercomputing, applied scientific computing, data science, AI, cloud and quantum computing.
“Our goal is to help UK industry generate economic growth and societal impact by exploiting advanced HPC capabilities and digital technologies,” explains Vassil Alexandrov, chief science officer at STFC Hartree Centre.
One of the core priorities for Alexandrov and his team is the interface between “exascale” computing and scalable AI. It’s a combination of technologies that’s being lined up to tackle “grand challenges” like the climate crisis and the transition from fossil fuels to clean energy.
A case in point is the Climate Resilience Demonstrator, which uses “digital twins” to simulate how essential infrastructure like electricity grids and telecoms networks might respond to extreme weather events. “These kinds of insights are critical to protect communities, maintain service delivery and build more resilient public infrastructure,” says Alexandrov.
Elsewhere, as part of the Fusion Computing Lab, the Hartree Centre is collaborating with the UK Atomic Energy Authority on sustainable energy generation from nuclear fusion. “We have a joint team of around 60 scientists and engineers working on this initiative to iterate and optimize the building blocks for a fusion power plant,” notes Alexandrov. “The end-game is to deliver net power safely and affordably to the grid from magnetically confined fusion.”
Exascale computing and AI also underpin the Research Computing and Innovation Centre, a collaboration with AWE, the organization that runs research, development and support for the UK’s nuclear-weapons stockpile.
The post How the STFC Hartree Centre is helping UK industry de-risk quantum computing investment appeared first on Physics World.