↩ Accueil

Vue normale

Reçu avant avant-hier

Vapourware and unobtanium: why overselling is not (always) a good idea

5 mai 2025 à 15:00

What does the word “overselling” mean to you? At one level, it can just mean selling more of something than already exists or can be delivered. It’s what happens when airlines overbook flights by selling more seats than physically exist on their planes. They assume a small fraction of passengers won’t turn up, which is fine – until you can’t fly because everyone else has rocked up ahead of you.

Overselling can also involve selling more of something than is strictly required. Also known as “upselling”, you might have experienced it when buying a car or taking out a new broadband contract. You end up paying for extras and add-ons that were offered but you didn’t really need or even want, which explains why you’ve got all those useless WiFi boosters lying around the house.

There’s also a third meaning of “overselling”, which is to exaggerate the merits of something. You see it when a pharmaceutical company claims its amazing anti-ageing product “will make you live 20 years longer”, which it won’t. Overselling in this instance means overstating a product’s capability or functionality. It’s pretending something is more mature than it is, or claiming a technology is real when it’s still at proof-of-concept-stage.

From my experience in science and technology, this form of overselling often happens when companies and their staff want to grab attention or to keep customers or consumers on board. Sometimes firms do it because they are genuinely enthusiastic (possibly too much so) about the future possibilities of their product. I’m not saying overselling is necessarily a bad thing but just that there are reservations.

Fact and fiction

Before I go any further, let’s learn the lingo of overselling. First off, there’s “vapourware”, which refers to a product that either doesn’t exist or doesn’t fulfil the stated technical capability. Often, it’s something a firm wants to include in its product portfolio because they’re sure people would like to own it. Deep down, though, the company knows the product simply isn’t possible, at least not right now. Like a vapour, it’s there but can’t be touched.

Sometimes vapourware is just a case of waiting for product development to catch up with a genuine product plan. Sales staff know they haven’t got the product at the right specification yet, and while the firm will definitely get there one day, they’re pretending the hurdles have already been crossed. But genuine over-enthusiasm can sometimes cross over into wishful thinking – the idea that a certain functionality can be achieved with an existing technical approach.

Do you remember Google Glass? This was wearable tech, integrated into spectacle frames, that was going to become the ubiquitous portable computer. Information would be requested via voice commands, with the user receiving back the results, visible on a small heads-up display. While the computing technology worked, the product didn’t succeed. Not only did it look clunky, there were also deployment constraints and concerns about privacy and safety.

Google Glass simply didn’t capture the public’s imagination or meet the needs of enough consumers

Google Glass failed on multiple levels and was discontinued in 2015, barely a year after it hit the market. Subsequent relaunches didn’t succeed either and the product was pulled for a final time in 2023. Despite Google’s best efforts, the product simply didn’t capture the public’s imagination or meet the needs of enough consumers.

Next up in our dictionary of overselling is “unobtanium”, which is a material or material specification that we would like to exist, but simply doesn’t. In the aerospace sector, where I work, we often dream of unobtanium. We’re always looking for materials that can repeatedly withstand the operational extremes encountered during a flight, while also being sustainable without cutting corners on safety.

Like other engine manufacturers, my company – GE Aerospace – is pioneering multiple approaches to help develop such materials. We know that engines become more efficient when they burn at higher temperatures and pressures. We also know that nitrous-oxide (NOx) emissions fall when an engine burns more leanly. Unfortunately, there are no metals we know of that can survive to such high temperatures.

But the quest for unobtanium can drive innovative technical solutions. At GE, for example, we’re making progress by looking instead at composite materials, such as carbon fibre and composite matrix ceramics. Stronger and more tolerant to heat and pressure than metals, they’ve already been included on the turbofan engines in planes such as the Boeing 787 Dreamliner.

We’re also using “additive manufacturing” to build components layer by layer. This approach lets us make highly intricate components with far less waste than conventional techniques, in which a block of material is machined away. We’re also developing innovative lean-burn combustion technologies, such as novel cooling and flow strategies, to reduce NOx emissions.

While unobtanium can never be reached, it’s worth trying to get there to drive technology forward

A further example is the single crystal turbine blade developed by Rolls-Royce in 2012. Each blade is cast to form a single crystal of super alloy, making it extremely strong and able to resist the intense heat inside a jet engine. According to the company, the single crystal turbine blades operate up to 200 degrees above the melting point of their alloy. So while unobtanium can never be reached, it’s worth trying to get there to drive technology forward.

Lead us not into temptation

Now, here’s the caveat. There’s an unwelcome side to overselling, which is that it can easily morph into downright mis-selling. This was amply demonstrated by the Volkswagen diesel emissions scandal, which saw the German carmaker install “defeat devices” in its diesel engines. The software changed how the engine performed when it was undergoing emissions tests to make its NOx emissions levels appear much lower than they really were.

VW was essentially falsifying its diesel engine emissions to conform with international standards. After regulators worldwide began investigating the company, VW took a huge reputational and financial hit, ultimately costing it more than $33bn in fines, penalties and financial settlements. Senior chiefs at the company got the sack and the company’s reputation took a serious hit.

It’s tempting – and sometimes even fun – to oversell. Stretching the truth draws interest from customers and consumers. But when your product no longer does “what it says on the tin”, your brand can suffer, probably more so than having something slightly less functional.

On the upside, the quest for unobtanium and, to some extent, the selling of vapourware can drive technical progress and lead to better technical solutions. I suspect this was the case for Google Glass. The underlying technology has had some success in certain niche applications such as medical surgery and manufacturing. So even though Google Glass didn’t succeed, it did create a gap for other vendors to fill.

Google Glass was essentially a portable technology with similar functionality to smartphones, such as wireless Internet access and GPS connectivity. Customers, however, proved to be happier carrying this kind of technology in their hands than wearing it on their heads. The smartphone took off; Google Glass didn’t. But the underlying tech – touchpads, cameras, displays, processors and so on – got diverted into other products.

Vapourware, in other words, can give a firm a competitive edge while it waits for its product to mature. Who knows, maybe one day even Google Glass will make a comeback?

The post Vapourware and unobtanium: why overselling is not (always) a good idea appeared first on Physics World.

Why nothing beats the buzz of being in a small hi-tech business

10 mars 2025 à 15:00

A few months ago, I attended a presentation and reception at the Houses of Parliament in London for companies that had won Business Awards from the Institute of Physics in 2024. What excited me most at the event was hearing about the smaller start-up companies and their innovations. They are developing everything from metamaterials for sound proofing to instruments that can non-invasively measure pressure in the human brain.

The event also reminded me of my own experience working in the small-business sector. After completing my PhD in high-speed aerodynamics at the University of Southampton, I spent a short spell working for what was then the Defence and Evaluation Research Agency (DERA) in Farnborough. But wanting to stay in Southampton, I decided working permanently at DERA wasn’t right for me so started looking for a suitable role closer to home.

I soon found myself working as a development engineer at a small engineering company called Stewart Hughes Limited. It was founded in 1980 by Ron Stewart and Tony Hughes, who had been researchers at the Institute of Sound and Vibration Research (ISVR) at Southampton University. Through numerous research contracts, the pair had spent almost a decade developing techniques for monitoring the condition of mechanical machinery from their vibrations.

By attaching accelerometers or vibration sensors to the machines, they discovered that the resulting signals can be processed to determine the physical condition of the devices. Their particular innovation was to find a way to both capture and process the accelerometer signals in near real time to produce indicators relating to the health of the equipment being monitored. It required a combination of hardware and software that was cutting edge at the time.

Exciting times

Although I did not join the firm until early 1994, it still had all the feel of a start-up. We were located in a single office building (in reality it was a repurposed warehouse) with 50 or so staff, about 40 of whom were electronics, software and mechanical engineers. There was a strong emphasis on “systems engineering” – in other words, integrating different disciplines to design and build an overarching solution to a problem.

In its early years, Stewart Hughes had developed a variety of applications for their vibration health monitoring technique. It was used in all sorts of areas, ranging from conveyor belts carrying coal and Royal Navy ships travelling at sea to supersized trucks working on mines. But when I joined, the company was focused on helicopter drivetrains.

In particular, the company had developed a product called Health and Usage Monitoring System (HUMS). The UK’s Civil Aviation Authority required this kind of device to be fitted on all helicopters transporting passengers to and from oil platforms in the North Sea to improve operational safety. Our equipment (and that of rival suppliers – we did not have a monopoly) was used to monitor mechanical parts such as gears, bearings, shafts and rotors.

For someone straight out of university, it was an exciting time. There were lots of technical challenges to be solved, including designing effective ways to process signals in noisy environments and extracting information about critical drivetrain components. We then had to convert the data into indicators that could be monitored to detect and diagnose mechanical issues.

As a physicist, I found myself working closely with the engineers but tended to approach things from a more fundamental angle, helping to explain why certain approaches worked and others didn’t. Don’t forget that the technology developed by Stewart Hughes wasn’t used in the comfort of a physics lab but on a real-life working helicopter. That meant capturing and processing data on the airborne helicopter itself using bespoke electronics to manage high onboard data rates.

After the data were downloaded, they had to be sent on floppy disks or other portable storage devices to ground stations. There the results would be presented in a form to allow customers and our own staff to interpret and diagnose any mechanical problems. We also had to develop ways to monitor an entire fleet of helicopters, continuously learning and developing from experience.

Stewart Hughes’s innovative and successful HUMS technology, which was the first of its kind to be flown on a North Sea helicopter, saw the company win Queen’s Awards on two separate occasions. The first was in 1993 for “export achievement” and the second was in 1998 for “technological achievement”. By the end of 1998 the company was bought by Smiths Industries, which in turn was acquired by General Electric in 2007.

Stormy days

If it all sounds as if working in a small business is plain sailing, well it rarely is. A few years before I joined, Stewart Hughes had ridden out at least one major storm when it was forced to significantly reduce the workforce because anticipated contracts did not materialize. “Black Friday”, as it became known, made the board of directors nervous about taking on additional employees, often relying on existing staff to work overtime instead.

This arrangement actually suited many of the early-career employees, who were keen to quickly expand their work experience and their pay packet. But when I arrived, we were once again up against cash-flow challenges, which is the bane of any small business. Back then there were no digital electronic documents and web portals, which led to some hairy situations.

I can recall several occasions when the company had to book a despatch rider for 2 p.m. on a Friday afternoon to dash a report up the motorway to the Ministry of Defence in London. If we hadn’t got an approval signature and contractual payment before the close of business on the same day, the company literally wouldn’t have been able to open its doors on Monday morning.

Being part of a small company was undoubtedly a formative part of my early career experience

At some stage, however, the company’s bank lost patience with this hand-to-mouth existence and the board of directors was told to put the firm on a more solid financial footing. This edict led to the company structure becoming more formal and the directors being less accessible, with a seasoned professional brought in to help run the business. The resulting change in strategic trajectory eventually led to its sale.

Being part of a small company was undoubtedly a formative part of my early career experience. It was an exciting time and the fact all employees were – literally – under one roof meant that we knew and worked with the decision makers. We always had the opportunity to speak up and influence the future. We got to work on unexpected new projects because there was external funding available. We could be flexible when it came to trying out new software or hardware as part of our product development.

The flip side was that we sometimes had to flex too much, which at times made it hard to stick to a cohesive strategy. We struggled to find cash to try out blue sky or speculative approaches – although there were plenty of good ideas. These advantages come with being part of a larger corporation with bigger budgets and greater overall stability.

That said, I appreciate the diverse and dynamic learning curve I experienced at Stewart Hughes. The founders were innovators, whose vision and products have stood the test of time, still being widely used today . The company benefited many people not just the staff who led successful careers but also the pilots and passengers on helicopters whose lives may potentially have been saved.

Working in a large corporation is undoubtedly a smoother ride than in a small business. But it’s rarely seat-of-the-pants stuff and I learned so much from my own days at Stewart Hughes. Attending the IOP’s business awards reminded me of the buzz of being in a small firm. It might not be to everyone’s taste, but if you get the chance to work in that environment, do give it serious thought.

The post Why nothing beats the buzz of being in a small hi-tech business appeared first on Physics World.

❌