↩ Accueil

Vue normale

index.feed.received.before_yesterday

Picking winners: the 10 most popular physics stories of 2024

30 décembre 2024 à 13:00

What makes a physics story popular? The answer is partly hidden in the depths of Internet search algorithms, but it’s possible to discern a few trends in this list of the 10 most read stories published on the Physics World website in 2024. Well, one trend, at least: it seems that many of you really, really like stories about quantum physics. Happily, we’ll be publishing lots more of them in 2025, the International Year of Quantum Science and Technology. But in the meantime, here are 2024’s most popular stories – quantum and otherwise.

10. A quantum thought experiment that continues to confound

As main characters in quantum thought experiments go, Wigner’s friend isn’t nearly as well-known as Schrödinger’s cat. While the alive-or-dead feline was popularized in the mid-20th century by the science fiction and fantasy writer Ursula K LeGuin, Wigner and his best mate remain relatively obscure, and unlikely to appear in an image created with entangled light (more on this later). Still, there’s plenty to ponder in this lesser-known thought experiment, which provocatively suggests that in the quantum world, what’s true may depend, quite literally, on where you stand: with Wigner’s friend inside a lab performing the quantum experiment, or with Wigner outside it awaiting the results.

9. A record-breaking superconductor that wasn’t

Popularity isn’t everything. This story focused on a paper about a high-temperature superconducting wire that appeared to have a current density 10 times higher than any previously reported. Unfortunately, the paper’s authors made an error when converting the magnetic units they used to calculate current density. This error – which the authors acknowledged, leading to the paper’s retraction – meant that the current density was too high by… well, by a factor of 10, actually.

Surprisingly, this wasn’t the most blatant factor-of-10 flop to enter the scientific literature this year. That dubious honour belongs to a team of environmental chemists who multiplied 60 kg x 7000 nanograms/kg to calculate the maximum daily dose of potentially harmful chemicals, and got an answer of…42 000 nanograms. Oops.

8. Exploiting quantum entanglement to create hidden images

Encoding images in photon correlations
Encoding images in photon correlations A conventional intensity image (left) reveals no information about the object, while a correlation image acquired using an electron-multiplied CCD camera (right) reveals the hidden object. (Courtesy: Reprinted with permission from C Vernière and H Defienne Phys. Rev. Lett. 10.1103/PhysRevLett.133.093601 ©2024 American Physical Society)

Remember the entangled-light Schrödinger’s cat image? Well, here it is again, this time in its original context. In an experiment that made it onto our list of the top 10 breakthroughs of 2024, researchers in France used quantum correlations to encode an image into light such that the image only becomes visible when particles of light (photons) are observed by a single-photon sensitive camera. Otherwise, the image is hidden from view. It’s a neat result, and we’re glad you agree it’s worth reading about.

7. An icy exoplanet with an atmosphere

At this time of year, some of us in the Northern Hemisphere feel like we’re inhabiting an icy exoplanet already, and some of you experiencing Southern Hemisphere heat waves probably wish you were. Sadly, none of us is ever going to live on (or even visit) the temperate exoplanet LHS 1140 b, which is located 49 light-years away from Earth and has a mass 5.6 times larger. Still, astronomers think this watery, icy world could be only the third planet (after Earth and Mars) in its star’s habitable zone known to have an atmosphere, and that was enough to pique readers’ interest.

6. Vortex cannon generates toroidal electromagnetic pulses

electromagnetic cannons emit electromagnetic vortex pulses thanks to coaxial horn antennas
Toroidal pulses Air cannons produce visible vortex rings by generating rotating air pressure differences, while electromagnetic cannons emit electromagnetic vortex pulses using coaxial horn antennas. (Courtesy: Ren Wang; Pan-Yi Bao; Zhi-Qiang Hu; Shuai Shi; Bing-Zhong Wang; Nikolay I Zheludev; Yijie Shen)

An electromagnetic vortex cannon might sound like an accessory from Star Trek. In fact, it’s a real object made from a device called a horn microwave antenna. It gets its name because it generates an electromagnetic field in free space that rotates around the propagation direction of the wave structure, similar to how an air cannon blows out smoke rings. According to its inventors, the electromagnetic vortex cannon could be used to develop communication, sensing, detection and metrology systems that overcome the limitations of existing wireless applications.

5. Why our world (still) cannot be anything but quantum

Returning to the quantum theme, the fifth-most-read story of 2024 concerned an experiment that demonstrated a new violation of the Leggett-Garg inequality (LGI). While the better-known Bell’s inequality describes how the behaviour of one object relates to that of another object with which it is entangled, the conceptually similar LGI describes how the state of a single object varies at different points in time. If either inequality is violated, the world is quantum. Previous experiments had already observed LGI violations in several quantum systems, but this one showed, for the first time, that neutrons in a beam must be in a coherent superposition of states – a fundamental property of quantum mechanics.

4. ‘Hidden’ citations conceal the true impact of scientific research

small segment of a scientific paper
True impact: a new study finds that “foundational” ideas in science are often not properly cited, which can skew rankings. (Courtesy: iStock/ilbusca)

When a scientific paper introduces a concept that goes on to become common knowledge, you might expect later researchers to cite the living daylights out of it – and you would be wrong. According to the study described in this article, the ideas in many such papers become so well known that the opposite happens: no-one bothers to cite them anymore.

This means that purely citation-based metrics of research “impact” tend to underestimate the importance of seminal works such as Alan Guth’s 1981 paper that introduced the theory of cosmic inflation. So if your amazing paper isn’t getting the citation love it deserves, take heart: maybe it’s too foundational for its own good.

3. Unifying gravity and quantum mechanics without the need for quantum gravity

Physicists have been trying to produce a theory that incorporates both gravity and quantum mechanics for almost a century now. One of the sticking points is that we don’t really know what a quantum theory of gravity might look like. Presumably, it would have to combine the world of gravity (where space and time warp in the presence of massive objects) with the world of quantum mechanics (which assumes that space and time are fixed) – but how?

For the University College London theorist Jonathan Oppenheim, this is the wrong question. As this article explains, Oppenheim has developed a new theoretical framework that aims to unify quantum mechanics and classical gravity – but, crucially, without the need to define a theory of quantum gravity first.

2. Open problem in quantum entanglement theory solved after nearly 25 years

Can a quantum system remain maximally entangled in a noisy environment? According to Julio I de Vicente from the Universidad Carlos III de Madrid, Spain, the answer is “no”. While the question and its answer might seem rather esoteric, this article explains that the implications extend beyond theoretical physics, with so-called “maximally entangled mixed states” having the potential to revolutionize our approach to other problems in quantum mechanics.

1. The ‘magic’ of quantum computation

The science fiction writer Arthur C Clarke famously said that “Any sufficiently advanced technology is indistinguishable from magic.” Sadly for Clarke fans, the magic in this article doesn’t involve physicists chanting incantations or waving wands over their experiments. Instead, it refers to quantum states that are especially hard to simulate on classical machines. These so-called “magic” states are a resource for quantum computers, and the amount of them available is a measure of a system’s quantum computational power. Indeed, certain error-correcting codes can improve the quality of magic states in a system, which makes a pleasing connection between this, the most-read article of 2024 on the Physics World website, and our pick for 2024’s “Breakthrough of the year.” See you in 2025!

The post Picking winners: the 10 most popular physics stories of 2024 appeared first on Physics World.

Quantum science and technology: highlights of 2024

28 décembre 2024 à 11:00

With so much fascinating research going on in quantum science and technology, it’s hard to pick just a handful of highlights. Fun, but hard.  Research on entanglement-based imaging and quantum error correction both appear in Physics World’s list of 2024’s top 10 breakthroughs, but beyond that, here are a few other achievements worth remembering as we head into 2025 – the International Year of Quantum Science and Technology.

Quantum sensing

In July, physicists at Germany’s Forschungszentrum Jülich and Korea’s IBS Center for Quantum Nanoscience (QNS) reported that they had fabricated a quantum sensor that can detect the electric and magnetic fields of individual atoms. The sensor consists of a molecule containing an unpaired electron (a molecular spin) that the physicists attached to the tip of a scanning-tunnelling microscope. They then used it to measure the magnetic and electric dipole fields emanating from a single iron atom and a silver dimer on a gold substrate.

Not to be outdone, an international team led by researchers at the University of Melbourne, Australia, announced in August that they had created a quantum sensor that detects magnetic fields in any direction. The new omnidirectional sensor is based on a recently-discovered carbon-based defect in a two-dimensional material, hexagonal boron nitride (hBN). This same material also contains a boron vacancy defect that enables the sensor to detect temperature changes, too.

Quantum communications

One of the challenges with transmitting quantum information is that pretty much any medium you send it through – including high-spec fibre optic cables and even the Earth’s atmosphere  – is at least somewhat good at absorbing photons and preventing them from reaching their intended destination.

Photo of Liang Jiang in an office pointing at a computer screen displaying a map of the proposed quantum network
Networking: Liang Jiang reviews the proposed quantum network using vacuum beam guides, which would have ranges of thousands of kilometers and capacities of 10 trillion qubits per second. (Courtesy: UChicago Pritzker School of Molecular Engineering/John Zich)

In July, a team at the University of Chicago, the California Institute of Technology and Stanford University proposed a novel solution. A continent-scale network of vacuum-sealed tubes, they suggested, could transmit quantum information at rates as high as 1013 qubits per second. This would exceed currently-available quantum channels based on satellites or optical fibres by at least four orders of magnitude. Whether anyone will actually build such a network is, of course, yet to be determined – but you have to admire the ambition behind it.

Quantum fundamentals

Speaking of ambition, this year saw a remarkable flurry of ideas for using quantum devices and quantum principles to study gravity. One innovative proposal involves looking for the gravitational equivalent of the photoelectric effect in a system of resonant bars that have been cooled and tuned to vibrate when they absorb a graviton from an incoming gravitational wave. The idea is that absorbing a graviton would change the quantum state of the column, and this change of state would, in principle, be detectable.

Conceptual image showing a massive column called a gravity bar floating through space against a background of yellow stardust
Detecting gravity: Researchers have proposed an experiment that could detect the elusive graviton – a quantum of gravity – using quantum sensing. (Courtesy: Pikovski research group)

Another quantum gravity proposal takes its inspiration from an even older experiment: the Cavendish torsion balance. The quantum version of this 18th-century classic would involve studying the correlations between two torsion pendula placed close together as they rotate back and forth like massive harmonic oscillators. If correlations appear that can’t be accounted for within a classical theory of gravity, this could imply that gravity is not, in fact, classical.

Perhaps the most exciting development in this space, though, is a new experimental technique for measuring the pull of gravity on a micron-scale particle. Objects of this size are just above the limit where quantum effects start to become apparent, and the Leiden and Southampton University researchers who performed the experiment have ideas for how to push their system further towards this exciting regime. Definitely one to keep an eye on.

The best of the rest

It wouldn’t be quantum if it wasn’t at least little bit weird, so here’s a few head-scratchers for you to puzzle over.

This year, researchers in China substantially reduced the number of qubits required to verify an online shopping transaction. Physicists in Austria asked whether a classical computer can tell when a quantum computer is telling the truth. And in a development that’s sure to warm the hearts of quantum experimentalists the world over, physicists at the SLAC National Laboratory in the US suggested that if your qubits are going haywire and you don’t know why, maybe, just maybe, it’s because they’re being constantly bombarded with dark matter.

Using noisy qubits to detect dark matter? Now that really would be a breakthrough.

The post Quantum science and technology: highlights of 2024 appeared first on Physics World.

❌