↩ Accueil

Vue normale

Reçu avant avant-hier

Researchers map the unrest in the Vulcano volcano

15 septembre 2025 à 10:00

The isle of Vulcano is a part of the central volcanic ridge of the Aeolian archipelago on the Tyrrhenian Sea in southern Italy. Over the course of its history, Vulcano has undergone multiple explosive eruptions, with the last one thought to have occurred around 1888–1890. However, there is an active hydrothermal system under Vulcano that has shown evidence of intermittent magma and gas flows since 2021 – a sign that the volcano has been in a state of unrest.

During unrest, the volcanic risk increases significantly – and the summer months on the island currently attract a lot of tourists that might be at risk, even from minor eruptive events or episodes of increased degassing. To examine why this unrest has occurred, researchers from the University of Geneva have collaborated with the National Institute of Geophysics and Volcanology (INGV) in Italy to recreate a 3D model of the interior of the volcano on Vulcano, using a combination of nodal seismic networks and artificial intelligence (AI).

Until now, few studies have examined the deep underground details of volcanoes, instead relying on looking at the outline of their internal structure. This is because the geological domains where eruptions nucleate are often inaccessible using airborne geophysical techniques, and onshore studies don’t penetrate far enough into the volcanic plumbing system to look at how the magma and hydrothermal fluids mix. Recent studies have shown the outline of the plumbing systems, but they’ve not had sufficient resolution to distinguish the magma from the hydrothermal system.

3D modelling of the volcano

To better understand what could have caused the 2021 Vulcano unrest, the researchers deployed a nodal network of 196 seismic sensors across Vulcano and Lipari (another island in the archipelago) to measure secondary seismic waves (S-waves) using a technique called seismic ambient noise tomography. S-waves propagate slowly as they pass through fluid-rich zones, which allows magma to be identified.

The researchers captured the S-wave data using the nodal sensor network and processed it with AI – using a deep neural network. This allowed the extensive seismic dispersion data to be quickly and automatically recovered, enabling generation of a 3D S-wave velocity model. The data were captured during the volcano’s early unrest’s phase, and the sensors recorded the natural ground vibrations over a period of one month. The model revealed the high-resolution tomography of the shallow part of a volcanic system in unrest, with the approach compared to taking an “X-ray” of the volcano.

“Our study shows that our end-to-end ambient noise tomography method works with an unprecedented resolution due to using dense nodal seismic networks,” says lead author Douglas Stumpp from the University of Geneva. “The use of deep neural networks allowed us to quickly and accurately measure enormous seismic dispersion data to provide near-real time monitoring.”

The model showed that there was no new magma body between Lipari and Vulcano within the first 2 km of the Earth’s crust, but it did reveal regions that could host cooling melts at the base of the hydrothermal system. These melts were proposed to be degassing melts that could easily release gas and brines if disturbed by an Earthquake – suggesting that tectonic fault dynamics may trigger volcanic unrest. It’s thought that the volcano might have released trapped fluids at depth after being perturbed by fault activity during the 2021 unrest.

Improving risk management

While this method doesn’t enable the researchers to predict when the eruption will happen, it provides a significant understanding into how the internal dynamics of volcanoes work during periods of unrest. The use of AI enables rapid processing of large amounts of data, so in the future, the approach could be used as an early warning system by analysing the behaviour of the volcano as it unfolds.

In theory, this could help to design dynamic evacuation plans based on the direct real-time behaviour of the volcano, which would potentially save lives. The researchers state that this could take some time to develop due to the technical challenge of processing such massive volumes of data in real time – but they note that this is now more feasible thanks to machine learning and deep learning.

When asked about how the researchers plan to further develop the research, Stumpp concludes that “our study paves the ground for 4D ambient noise tomography monitoring – three dimensions of space and one dimension of time. However, I believe permanent and maintained seismic nodal networks with telemetric access to the data need to be implemented to achieve this goal”.

The research is published in Nature Communications.

The post Researchers map the unrest in the Vulcano volcano appeared first on Physics World.

Android phone network makes an effective early warning system for earthquakes

15 août 2025 à 10:00

The global network of Android smartphones makes a useful earthquake early warning system, giving many users precious seconds to act before the shaking starts. These findings, which come from researchers at Android’s parent organization Google, are based on a three-year-long study involving millions of phones in 98 countries. According to the researchers, the network’s capabilities could be especially useful in areas that lack established early warning systems.

By using Android smartphones, which make up 70% of smartphones worldwide, the Android Earthquake Alert (AEA) system can help provide life-saving warnings in many places around the globe,” says study co-leader Richard Allen, a visiting faculty researcher at Google who directs the Berkeley Seismological Laboratory at the University of California, Berkeley, US.

Traditional earthquake early warning systems use networks of seismic sensors expressly designed for this purpose. First implemented in Mexico and Japan, and now also deployed in Taiwan, South Korea, the US, Israel, Costa Rica and Canada, they rapidly detect earthquakes in areas close to the epicentre and issue warnings across the affected region. Even a few seconds of warning can be useful, Allen explains, because it enables people to take protective actions such as the “drop, cover and hold on” (DCHO) sequence recommended in most countries.

Building such seismic networks is expensive, and many earthquake-prone regions do not have them. What they do have, however, is smartphones. Most such devices contain built-in accelerometers, and as their popularity soared in the 2010s, seismic scientists began exploring ways of using them to detect earthquakes. “Although the accelerometers in these phones are less sensitive than the permanent instruments used in traditional seismic networks, they can still detect tremors during strong earthquakes,” Allen tells Physics World.

A smartphone-based warning system

By the late 2010s, several teams had developed smartphone apps that could sense earthquakes when they happen, with early examples including Mexico’s SkyAlert and Berkeley’s ShakeAlert. The latest study takes this work a step further. “By using the accelerometers in a network of smartphones like a seismic array, we are now able to provide warnings in some parts of the world where they didn’t exist before and are most needed,” Allen explains.

Working with study co-leader Marc Stogaitis, a principal software engineer at Android, Allen and colleagues tested the AEA system between 2021 and 2024. During this period, the app detected an average of 312 earthquakes a month, with magnitudes ranging from 1.9 to 7.8 (corresponding to events in Japan and Türkiye, respectively).

Detecting earthquakes with smartphones

Animation showing phones detecting shaking as a magnitude 6.2 earthquake in Türkiye progressed. Yellow dots are phones that detect shaking. The yellow circle is the P-wave’s estimated location and the red circle is for the S-wave. Note that phones can detect shaking for reasons other than an earthquake, and the system needs to handle this source of noise. This video has no sound. (Courtesy: Google)

For earthquakes of magnitude 4.5 or higher, the system sent “TakeAction” alerts to users. These alerts are designed to draw users’ attention immediately and prompt them to take protective actions such as DCHO. The system sent alerts of this type on average 60 times per month during the study period, for an average of 18 million individual alerts per month. The system also delivered lesser “BeAware” alerts to regions expected to experience a shaking intensity of 3 or 4.

To assess how effective these alerts were, the researchers used Google Search to collect voluntary feedback via user surveys. Between 5 February 2023 and 30 April 2024, 1 555 006 people responded to a survey after receiving alerts generated from an AEA detection. Their responses indicated that 85% of them did indeed experience shaking, with 36% receiving the alert before the ground began to move, 28% during and 23% after.

Graphic showing responses to survey on the effectiveness of the AEA and users' responses to alerts
Feeling the Earth move: Feedback from users who received an alert. A total of 1 555 006 responses to the user survey were collected over the period 5 February 2023 to 30 April 2024. During this time, alerts were issued for 1042 earthquakes detected by AEA. (Courtesy: Google)

Principles of operation

AEA works on the same principles of seismic wave propagation as traditional earthquake detection systems. When an Android smartphone is stationary, the system uses the output of its accelerometer to detect the type of sudden increase in acceleration that P and S waves in an earthquake would trigger. Once a phone detects such a pattern, it sends a message to Google servers with the acceleration information and an approximate location. The servers then search for candidate seismic sources that tally with this information.

“When a candidate earthquake source satisfies the observed data with a high enough confidence, an earthquake is declared and its magnitude, hypocentre and origin time are estimated based on the arrival time and amplitude of the P and S waves,” explains Stogaitis. “This detection capability is deployed as part of Google Play Services core system software, meaning it is on by default for most Android smartphones. As there are billions of Android phones around the world, this system provides an earthquake detection capability wherever there are people, in both wealthy and less-wealthy nations.”

In the future, Allen says that he and his colleagues hope to use the same information to generate other hazard-reducing tools. Maps of ground shaking, for example, could assist the emergency response after an earthquake.

For now, the researchers, who report their work in Science, are focused on improving the AEA system. “We are learning from earthquakes as they occur around the globe and the Android Earthquake Alerts system is helping to collect information about these natural disasters at a rapid rate,” says Allen. “We think that we can continue to improve both the quality of earthquake detections, and also improve on our strategies to deliver effective alerts.”

The post Android phone network makes an effective early warning system for earthquakes appeared first on Physics World.

Earth-shaking waves from Greenland mega-tsunamis imaged for the first time

24 juillet 2025 à 10:00

In September 2023, seismic detectors around the world began picking up a mysterious signal. Something – it wasn’t clear what – was causing the entire Earth to shake every 90 seconds. After a period of puzzlement, and a second, similar signal in October, theoretical studies proposed an explanation. The tremors, these studies suggested, were caused by standing waves, or seiches, that formed after landslides triggered huge tsunamis in a narrow waterway off the coast of Greenland.

Engineers at the University of Oxford, UK, have now confirmed this hypothesis. Using satellite altimetry data from the Surface Water Ocean Topography (SWOT) mission, the team constructed the first images of the seiches, demonstrating that they did indeed originate from landslide-triggered mega-tsunamis in Dickson Fjord, Greenland. While events of this magnitude are rare, the team say that climate change is likely to increase their frequency, making continued investments in advanced satellite missions essential for monitoring and responding to them.

An unprecedented view into the fjord

Unlike other altimeters, SWOT provides two-dimensional measurements of sea surface height down to the centimetre across the entire globe, including hard-to-reach areas like fjords, rivers and estuaries. For team co-leader Thomas Monahan, who studied the seiches as part of his PhD research at Oxford, this capability was crucial. “It gave us an unprecedented view into Dickson Fjord during the seiche events in September and October 2023,” he says. “By capturing such high-resolution images of sea-surface height at different time points following the two tsunamis, we could estimate how the water surface tilted during the wave – in other words, gauge the ‘slope’ of the seiche.”

The maps revealed clear cross-channel slopes with height differences of up to two metres. Importantly, these slopes pointed in opposite directions, showing that water was moving backwards as well as forwards across the channel. But that wasn’t the end of the investigation. “Finding the ‘seiche in the fjord’ was exciting but it turned out to be the easy part,” Monahan says. “The real challenge was then proving that what we had observed was indeed a seiche and not something else.”

Enough to shake the Earth for days

To do this, the Oxford engineers approached the problem like a game of Cluedo, ruling out other oceanographic “suspects” one by one. They also connected the slope measurements with ground-based seismic data that captured how the Earth’s crust moved as the wave passed through it. “By combining these two very different kinds of observations, we were able to estimate the size of the seiches and their characteristics even during periods in which the satellite was not overhead,” Monahan says.

Although no-one was present in Dickson Fjord during the seiches, the Oxford team’s estimates suggest that the event would have been terrifying to witness. Based on probabilistic (Bayesian) machine-learning analyses, the team say that the September seiche was initially 7.9 m tall, while the October one measured about 3.9 m.

“That amount of water sloshing back and forth over a 10-km-section of fjord walls creates an enormous force,” Monahan says. The September seiche, he adds, produced a force equivalent to 14 Saturn V rockets launching at once, around 500 GN. “[It] was literally enough to shake the entire Earth for days,” he says.

What made these events so powerful was the geometry of the fjord, Monahan says. “A sharp bend near its outlet effectively trapped the seiches, allowing them to reverberate for days,” he explains. “Indeed, the repeated impacts of water against fjord walls acted like a hammer striking the Earth’s crust, creating long-period seismic waves that propagated around the globe and that were strong enough to be detected worldwide.”

Risk of tsunamigenic landslides will likely grow

As for what caused the seiches, Monahan suggests that climate change may have been a contributing factor. As glaciers thin, they undergo a process called de-buttressing wherein the loss of ice removes support from the surrounding rock, leading it to collapse. It was likely this de-buttressing that caused two enormous landslides in Dickson Fjord within a month, and continued global warming will only increase the frequency. “As these events become more common, especially in steep, ice-covered terrain, the risk of tsunamigenic landslides will likely grow,” Monahan says.

The researchers say they would now like to better understand how the seiches dissipated afterwards. “Although previous work successfully simulated how the megatsunamis stabilized into seiches, how they decayed is not well understood,” says Monahan. “Future research could make use of SWOT satellite observations as a benchmark to better constrain the processes behind disputation.”

The findings, which are detailed in Nature Communications, show how top-of-the-line satellites like SWOT can fill these observational gaps, he adds. To fully leverage these capabilities, however, researchers need better processing algorithms tailored to complex fjord environments and new techniques for detecting and interpreting anomalous signals within these vast datasets. “We think scientific machine learning will be extremely useful here,” he says.

The post Earth-shaking waves from Greenland mega-tsunamis imaged for the first time appeared first on Physics World.

Mysterious seismic wave speed-up deep within Earth’s mantle explained at last

4 juillet 2025 à 10:20

Scientists in Switzerland and Japan have uncovered what they say is the first direct evidence that materials at the bottom of the Earth’s mantle flow like a massive river. This literally “ground-breaking” finding, made by comparing seismic data with laboratory studies of materials at high pressures and temperatures, could reshape our understanding of the dynamics at play deep within our planet’s interior.

For over half a century, one of the greatest unresolved mysteries in geosciences has been a phenomenon that occurs just above the boundary where the Earth’s solid mantle meets its liquid core, says Motohiko Murakami, a geophysicist at ETH Zurich who led the new research effort. Within this so-called D” layer, the velocity of seismic waves passing through the mantle abruptly increases, and no-one is entirely sure why.

This increase is known as the D” discontinuity, and one possible explanation for it is a change in the material the waves are travelling through. Indeed, in 2004, Murakami and colleagues at the Tokyo Institute of Technology’s department of earth and planetary sciences suspected they’d uncovered an explanation along just these lines.

In this earlier study, the researchers showed that perovskite – the main mineral present in the Earth’s lower mantle – transforms into a different substance known as post-perovskite under the extreme pressures and temperatures characteristic of the D” layer. Accordingly, they hypothesized that this phase change could explain the jump in the speed of seismic waves.

Nature, however, had other ideas. “In an experimental study on seismic wave speeds across the post-perovskite phase transition we conducted three years later, such a sharp increase in velocity was not observed, bringing the problem back to square one,” Murakami says.

Post-perovskite crystals line up

Subsequent computer modelling revealed a subtler effect at play. According to these models, the hardness of post-perovskite materials is not fixed. Instead, it depends on the direction of the material’s crystals – and seismic waves through the material will only speed up when all the crystals point in the same direction.

In the new work, which they detail in Communications Earth & Environment, Murakami and colleagues at Tohoku University and the Japan Synchrotron Radiation Research Institute confirmed this in a laboratory experiment for the first time. They obtained their results by placing crystals of a post-perovskite with the chemical formula MgGeO3 in a special apparatus designed to replicate the extreme pressures (around 1 million atmospheres) and temperatures (around 2500 K) found at the D” depth nearly 3000 km below the Earth’s surface. They then measured the velocity of lab-produced seismic waves sent through this material.

These measurements show that while randomly-oriented crystal samples do not reproduce the shear wave velocity jump at the D” discontinuity, crystals oriented along the (001) slip plane of the material’s lattice do. But what could make these crystals line up?

Evidence of a moving mantle

The answer, Murakami says, lies in slow, convective motions that cause the lower mantle to move at a rate of several centimetres per year. “This convection drives plate tectonics, volcanic activity and earthquakes but its effects have primarily been studied in the shallower region of the mantle,” he explains. “And until now, direct evidence of material movement in the deep mantle, nearly 3000 km beneath the surface, has remained elusive.”

Murakami explains that the post-perovskite mineral is rigid in one direction while being softer in others. “Since it naturally aligns its harder axis with the mantle flow, it effectively creates a structured arrangement at the base of the mantle,” he says.

According to Murakami, the discovery that solid (and not liquid) rock flows at this depth does more than just solve the D” layer mystery. It could also become a critical tool for identifying the locations at which large-scale mantle upwellings, or superplumes, originate. This, in turn, could provide new insights into Earth’s internal dynamics.

Building on these findings, the researchers say they now plan to further investigate the causes of superplume formation. “Superplumes are believed to trigger massive volcanic eruptions at the Earth’s surface, and their activity has shown a striking correlation — occurring just before two major mass extinction events in Earth’s history,” Murakami says.

Being able to understand – and perhaps even predict – future superplume activity could therefore “provide critical insights into the long-term survival of humanity”, he tells Physics World. “Such deep mantle processes may have profound implications for global environmental stability,” he says. “By advancing this research, we aim to uncover the mechanisms driving these extraordinary mantle events and assess their potential impact on Earth’s future.”

The post Mysterious seismic wave speed-up deep within Earth’s mantle explained at last appeared first on Physics World.

❌