↩ Accueil

Vue normale

Reçu avant avant-hier

Electrochemical loading boosts deuterium fusion in a palladium target

25 août 2025 à 10:02

Researchers in Canada have used electrochemistry to increase the rate of nuclear fusion within a metal target that is bombarded with high-energy deuterium ions. While the process is unlikely to lead to a new source of energy – it consumes far more energy than it produces – further research could provide new insights into fusion and other areas of science.

Although modern fusion reactors are huge projects sometimes costing billions, the first evidence for an artificial fusion reaction – observed by Mark Oliphant and Ernest Rutherford in 1934 – was a simple experiment in which deuterium nuclei in a solid target were bombarded with deuterium ions.

Palladium is a convenient target for such experiments because the metal’s lattice has the unusual propensity to selectively absorb hydrogen (and deuterium) atoms. In 1989 the chemists Stanley Pons of the University of Utah and Martin Fleischmann of the University of Southampton excited the world by claiming that the electrolysis of heavy water using a palladium cathode caused absorbed deuterium atoms to undergo spontaneous nuclear fusion under ambient conditions (with no ion bombardment). However, this observation of “cold fusion” could not be reproduced by others.

Now, Curtis Berlinguette at the University of British Columbia and colleagues have looked at whether electrochemistry could enhance the rate of fusion triggered by bombarding palladium with high-energy deuterium ions.

Benchtop accelerator

In the new work, the researchers used a palladium foil as the cathode in an electrochemical cell that was used in the electrolysis of heavy water. The other side of the cathode was the target for a custom-made benchtop megaelectronvolt particle accelerator. Kuo-Yi Chen, a postdoc in Berlinguette’s group, developed a microwave plasma thruster that was used to dissociate deuterium into ions. “Then we have a magnetic field that directs the ions into that metal target,” explains Berlinguette. The process, called plasma immersion ion implantation, is sometimes used to dope semiconductors, but has never previously been used to trigger nuclear fusion. Their apparatus is dubbed the Thunderbird Reactor.

The researchers used a neutron detector surrounding the apparatus to count the fusion events occurring. They found that, when they turned on the reactor, they initially detected very few events. However, as the amount of deuterium implanted in the palladium grew, the number of fusion events grew and eventually plateaued. The researchers then switched on the electrochemical cell, driving deuterium into the palladium from the other side using a simple lead-acid battery. They found that the number of fusion events detected increased another 15%.

Currently, the reactor produces less than 10-10 times the amount of energy it consumes. However, the researchers believe it could be used in future research. “We provide the community with an apparatus to study fusion reactions at lower energy conditions than has been done before,” says Berlinguette. “It’s an uncharted experimental space so perhaps there might be some interesting surprises there…What we are really doing is providing the first clear experimental link between electrochemistry and fusion science.”

Berlinguette also notes that, even if the work never finds any productive application in nuclear fusion research, the techniques involved could be useful elsewhere. In high temperature superconductivity, for example, researchers often use extreme pressures to create metal hydrides: “Now we’re showing you can do this using electrochemistry instead,” he says. He also points to the potential for deuteration of drugs, which is an active area of research in pharmacology.

The research is described in a paper in Nature, with Chen as lead author.

Jennifer Dionne and her graduate student Amy McKeown-Green at Stanford University in the US are impressed: “In the work back in the 1930s they had a static target,” says McKeown-Green. “This is a really cool example of how you can perturb the system in this low-energy, sub-million Kelvin regime.” She would be interested to see further analysis on exactly what the temperature is and whether other metals show similar behaviours.

“Hydrogen and elements like deuterium tend to sit in the interstitial sites in the palladium lattice and, at room temperature and pressure, about 70% of those will be full,” explains Dionne. “A cool thing about this paper is that they showed how an electrical bias increases the amount of deuteration of the target. It was either completely obvious or completely counter-intuitive depending on how you look at it, and they’ve proved definitively that you can increase the amount of deuteration and then increase the fusion rate.”

The post Electrochemical loading boosts deuterium fusion in a palladium target appeared first on Physics World.

Lee Packer: ‘There’s no fundamental physical reason why fusion energy won’t work’

21 juillet 2025 à 17:00

The Cockcroft Walton lecture series is a bilateral exchange between the Institute of Physics (IOP) and the Indian Physics Association (IPA). Running since 1998, it aims to promote dialogue on global challenges through physics.

Lee Packer, who has over 25 years of experience in nuclear science and technology and is an IOP Fellow, delivered the 2025 Cockcroft Walton Lecture Series in April. Packer gave a series of lectures at the Homi Bhabha Research Centre (BARC) in Mumbai, the Institute for Plasma Research (IPR) in Ahmedabad and the Inter-University Accelerator Centre (IUAC) in Delhi.

Packer is a fellow of the UK Atomic Energy Authority (UKAEA), in which he works on nuclear aspects of fusion technology. He also works as consultant to the International Atomic Energy Agency (IAEA) in Vienna, where he is based in the physics section of the department of nuclear sciences and applications.

Packer also holds an honorary professorship at the University of Birmingham, UK, where he lectures on nuclear fusion as part of its long-running MSc course in the physics and technology of nuclear reactors.

Below, Packer talks to Physics World about the trip, his career in fusion and what advice he has for early-career researchers.

When did you first become interested in physics?

I was fortunate to have some inspiring teachers at school who made physics feel both exciting and full of possibility. It really brought home how important teachers are in shaping future careers and they deserve far more recognition than they often receive. I went on to study physics at Salford University and during that time spent a year on industrial placement at the ISIS Neutron and Muon Source based at the Rutherford Appleton Laboratory (RAL). That year deepened my interest in applied nuclear science and highlighted the immense value of neutrons across real-world applications – from materials research and medicine to nuclear energy.

Can you tell me about your career to date?

I’ve specialized in applied nuclear science throughout my career, with a particular focus on neutronics – the analysis of neutron transport – and radiation detection applied to nuclear technologies. Over the past 25 years, I’ve worked across the nuclear sector – in spallation, fission and fusion – beginning in analytical and research roles before progressing to lead technical teams supporting a broad range of nuclear programmes.

When did you start working in fusion?

While I began my career in spallation and fission, the expertise I developed in neutronics made it a natural transition into fusion in 2008. It’s important to recognize that deuterium-tritium fuelled fusion power is a neutron-rich energy source – in fact, 80% of the energy released comes from neutrons. That means every aspect of fusion technology must be developed with the nuclear environment firmly in mind.

Why do you like about working in fusion energy?

Fusion is an inherently interdisciplinary challenge and there are many interesting and difficult problems to solve, which can make it both stimulating and rewarding. There’s also a strong and somewhat refreshing international spirit in fusion – the hard challenges mean collaboration is essential. I also like working with early-career scientists and engineers to share knowledge and experience. Mentoring and teaching is rewarding, and it’s crucial that we continue building the pipelines of talent needed for fusion to succeed.

Tell me about your trip to India to deliver the Cockcroft Walton lecture series?

I was honoured to be selected to deliver the Cockcroft-Walton lecture series. Titled “Perspectives and challenges within the development of nuclear fusion energy”, the lectures explored the current global landscape of fusion R&D, technical challenges in areas such as neutronics and tritium breeding, and the importance of international collaboration. I shared some insights from activities within the UK and gave a global perspective. The reception was very positive – there’s strong enthusiasm within the Indian fusion community and they are making excellent contributions to global progress in fusion. The hosts were extremely welcoming, and I’d like to thank them for their hospitality and the fascinating technical tours at each of the institutes. It was an experience I won’t forget.

What are India’s strengths in fusion?

India has several strengths including a well-established technical community, major national laboratories such as IPR, IUAC and BARC, and significant experience in fusion through its domestic programme and direct involvement in ITER as one of the seven members. There is strong expertise in areas such as nuclear physics, neutronics, materials, diagnostics and plasma physics.

Lee Packer meeting officials at BARC
Meeting points: Lee Packer meeting senior officials at the Homi Bhabha Research Centre in Mumbai. (Courtesy: Indian Physics Association)

What could India improve?

Where India might improve could be in building further on its amazing potential – particularly its broader industrial capacity and developing its roadmap towards power plants. Common to all countries pursuing fusion, sustained investment in training and developing talented people will be key to long-term success.

When do you think we will see the first fusion reactor supplying energy to the grid?

I can’t give a definitive answer for when fusion will supply electricity to the grid as it depends on resolving some tough, complex technical challenges alongside sustained political commitment and long-term investment. There’s a broad range of views and industrial strategies being developed within the field. For example, the UK government’s recently published clean energy industrial strategy mentions the Spherical Tokamak for Energy Production programme, which aims to deliver a prototype fusion power plant by 2040 at West Burton, Nottinghamshire, at the site of a former coal power station. The Fusion Industry Association’s survey of private fusion companies reports that many are aiming for fusion-generated electricity by the late 2030s, though time projections vary.

There are others who say it may never happen?

Yes. On the other hand, some point to several critical hurdles to address and offer more cautious perspectives and call for greater realism. One such problem, close to my own interest in neutronics, is the need to demonstrate tritium-breeding blanket-technology systems and to develop lithium-6 supplies at the required scale for the industry.

What are the benefits of doing so?

The potential benefits for society are too significant to disregard on the grounds of difficulty alone. There’s no fundamental physical reason why fusion energy won’t work and the journey itself brings substantial value. The technologies developed along the way have potential for broader applications, and a highly skilled and adaptable workforce is developed with this.

What advice do you have for early-career physicists thinking about working in the field?

Fusion needs strong collaboration between people from across the board – physicists, engineers, materials scientists, modellers and more. It’s an incredibly exciting time to get involved. My advice would be to keep an open mind and seek out opportunities to work across these disciplines. Look for placements, internships, graduate or early-career positions and mentorship – and don’t be afraid to ask questions. There’s a brilliant international community in fusion, and a willingness to support those with kick-starting their careers in this field. Join the effort to develop this technology and you’ll be part of something that’s not only intellectually stimulating and technically challenging but is also important for the future of the planet.

The post Lee Packer: ‘There’s no fundamental physical reason why fusion energy won’t work’ appeared first on Physics World.

FAST FUSION – Test Nintendo Switch 2

19 juin 2025 à 09:10

Alors que Mario Kart World fait des ravages sur Nintendo Switch 2, et il faut bien dire qu’il est excellent, un autre jeu de course est sorti en même temps en exclu sur la console et c’est tout bonnement le « Wipeout » de la Switch 2… Voici Fast Fusion!

Le studio Shin’en nous propose donc son nouveau jeu de course futuriste et il faut rappeler que ce n’est pas nouveau pour eux. Ils ont en effet réalisé Fast RMX sur Switch ainsi que Fast Racing Neo sur Wii U par exemple. Ce Fast Fusion découle directement de ces jeux en apportant quelques nouveautés…

Entre Wipeout et F-Zero, ce Fast Fusion mise sur la course rapide, mais sans armes, avec par contre différents skills de pilotage. On traverse des circuits tortueux à bords de bolides anti-gravité rutilants et la vitesse est clairement au rendez-vous! Il faudra utiliser la piste à bon escient (sélection de couleurs) pour en tirer le meilleur parti et user de turbos et autres boost. Mais attention, s’il faut passer sur certains éléments positifs, il faut aussi éviter ceux qui vous stopperont net dans votre course. Le moindre écart d’ailleurs peut vite vous envoyer dans le décors dans une explosion spectaculaire… mais pour éviter cela on peut notamment profiter de sauts à tous moments.

Bien sûr, comme tous jeux de ce type, l’entrainement est primordial pour exceller en course. Mais le jeu reste accessible à tous dès les premiers tours de pistes. L’apprentissage se fait petit à petit sans trop de frustration.

Fast Fusion permet de glaner de l’argent en jeu pour débloquer des musiques (survitaminées!) Ou des véhicules. D’ailleurs, certains défis plus retords permettent de gagner davantage de pépettes si vous vous en sentez capables.

C’est indiqué dans son titre, Fast Fusion, propose une nouveauté en ce qui concerne ses vaisseaux (15 de base) à savoir un nouveau système qui permet de les fusionner entre eux. Ainsi, en combinant les caractéristiques de chaque bolide on peut obtenir 210 possibilités différentes! Cela reste assez anecdotique au final mais c’est plutôt une bonne idée qui permet de mettre un peu les mains dans le cambouis et de varier les plaisirs de conduite.

Concernant les circuits ils sont au nombre de 12 (on aurait aimé encore plus!) et manque un peu de variété mais, en même temps, on a jamais trop le temps de contempler le paysage…

Sorti sur Nintendo Switch 2, Fast Fusion s’est adapté à la nouvelle machine avec du 4K/60fps, du jeu en local (2 à 4 joueurs) (en 60fps et le fameux GameShare. Après, la qualité visuelle reste inégale selon le mode portable ou dock. Aussi, on pourra choisir un mode qualité mais en 30fps… Dans tous les cas, le jeu est assez propre et une mise à jour (Pure) prochaine va proposer une version plus net, sans upscaling comme c’est le cas pour le moment. Bien sûr, il faut posséder un écran 4K pour profiter des meilleurs visuels et de la meilleure définition.

Fast Fusion, n’est pas le jeu de course futuriste ultime mais poursuit une série qui fait toujours belle impression sur les consoles de Nintendo et pour environ 15 euros, on aurait tort de s’en passer. Shin’en fait toujours les choses bien, alliant vitesse, fluidité, musique, esthétisme sans en faire trop et en se concentrant sur l’essentiel, le plaisir de jouer. Et idéalement, à plusieurs!

Cet article FAST FUSION – Test Nintendo Switch 2 est apparu en premier sur Insert Coin.

RA’telier « Comment diffuser les usages de la réalité augmentée dans les entreprises ? » le 5 mai

29 avril 2020 à 16:07

Dans la série des RA’telier de RA’pro, nous vous invitons le mardi 5 mai prochain à 12h30 à venir discuter de manière conviviale sur le thème de la diffusion des ...

L’article RA’telier « Comment diffuser les usages de la réalité augmentée dans les entreprises ? » le 5 mai est apparu en premier sur Réalité Augmentée - Augmented Reality.

Augmented Times – les nouvelles hebdomadaires de la réalité augmentée – 2018S14

9 avril 2018 à 09:00

Juste avant l'ouverture de la 20ème édition de Laval Virtual la veille en réalité augmentée est très tournée vers les usages. Vous noterez les exemples de plus en plus nombreux dans les musées en particulier et plus généralement dans le tourisme, preuve s'il en faut que l'assistance et la visite virtuelle sont des incontournables aujourd'hui. Vous noterez également la dose habituelle de communication autours de Magic Leap, mais avec cette fois un espoir de voir des prototypes et d'avoir des tests indépendants. Je me demande si la montagne va accoucher d'une souris ! :)

L’article Augmented Times – les nouvelles hebdomadaires de la réalité augmentée – 2018S14 est apparu en premier sur Réalité Augmentée - Augmented Reality.

❌