↩ Accueil

Vue normale

Forging a more inclusive new generation of physicists

17 décembre 2025 à 19:00

The latest episode of Physics World Stories takes you inside CUWiP+, the Conference for Undergraduate Women and Non-Binary Physicists, and the role the annual event plays in shaping early experiences of studying physics.

CUWIP+ US and Ireland logoThe episode features June McCombie from the University of Nottingham, who discusses what happens at CUWiP+ events and why they are so important for improving the retention of women and non-binary students in STEM. She reflects on how the conferences create space for students to explore career paths, build confidence and see themselves as part of the physics community.

Reflections and tips from CUWiP+ 2025

University of Birmingham students Tanshpreet Kaur and Harriett McCormick share their experiences of attending the 2025 CUWiP+ event at the University of Warwick and explain why they are excited for the next event, set for Birmingham, 19–22 March 2026. They describe standout moments from 2025, including being starstruck at meeting Dame Jocelyn Bell Burnell, who discovered radio pulsars in 1967.

The episode provides practical advice to get the most out of the event. Organizers design the programme to cater for all personalities – whether you thrive in lively, social situations, or prefer time to step back and reflect. Either way, CUWiP+ offers opportunities to be inspired and to make meaningful connections.

Hosted by Andrew Glester, the episode highlights how shared experiences and supportive networks can balance the often-solitary nature of studying physics, especially when you feel excluded from the majority group.

The post Forging a more inclusive new generation of physicists appeared first on Physics World.

💾

Want a strong future for physics? Here’s why we must focus on students from under-represented groups

17 décembre 2025 à 12:00

Physics students from under-represented groups consistently report a lower sense of belonging at university than their over-represented peers. These students experience specific challenges that make them feel undervalued and excluded. Yet a strong sense of belonging has been shown to lead to improved academic performance, greater engagement in courses and better mental wellbeing. It is vital, then, that universities make changes to help eliminate these challenges.

Students are uniquely placed to describe the issues when it comes to belonging in physics. With this mind, as an undergraduate physics student with a passion for making the discipline more diverse and inclusive, I conducted focus groups with current and former physics students, interviewed experts and performed an analysis of current literature.  This was part of a summer project funded by the Royal Institution and is currently being finalized for publication.

From this work it became clear that under-represented groups face many challenges to developing a strong sense of belonging in physics, but, at the same time, there are ways to improve the everyday experiences of students. When it comes to barriers, one is the widely held belief – reflected in the way physicists are depicted in the media and textbooks – that you need to be a “natural genius” to succeed in university physics. This notion hampers students from under-represented groups, who see peers from the over-represented majority appearing to grasp concepts more quickly and lecturers suggesting certain topics are “easy”.

The feeling that physics demands natural ability also arises from the so-called “weed out” culture, which is defined as courses that are intentionally designed to filter students out, reduce class sizes and diminish sense of belonging. Students who we surveyed believe that the high fail rate is caused by a disconnect between the teaching and workshops on the course and the final exam.

A third cause of this perception that you need some innate ability to succeed in physics is the attitudes and behaviour of some professors, lecturers and demonstrators. This includes casual sexist and racist behaviour; belittling students who ask for help; and acting as if they’re uninterested in teaching. Students from under-represented groups report significantly lower levels of respect and recognition from instructors, which damages their resilience and weakens sense of belonging.

Students from under-represented groups are also more likely to be isolated from their class mates and feel socially excluded from them. This means they lack a support network, leaving them with no-one to turn to when they encounter challenges. Outside the lecture theatre, students from under-represented groups typically face many microaggressions in their day-to-day university experience. These are subtle indignities or insults, unconsciously or consciously, towards minorities such as people of colour being told they “speak English very well”, male students refusing to accept women’s ideas, and the assumption that gender minorities will take on administrative roles in group projects.

Focus on the future

So what can be done? The good news is that there are many solutions to mitigate these issues and improve a sense of belonging. First, institutions should place more emphasis on small group “active learning” – which includes discussions, problem solving and peer-based learning. These pedagogical strategies have been shown to boost belonging, particularly for female students. After these active-learning sessions, non-academic, culturally sensitive social lunches can help turn “course friends” to “real friends” who choose to meet socially and can become a support network. This can help build connections within and between degree cohorts.

Another solution is for universities to invite former students to speak about their sense of belonging and how it evolved or improved throughout their degree. Hearing about struggles and learning tried-and-tested strategies to improve resilience can help students better prepare for stressful situations. Alumni are more relatable than generic messaging from the university wellbeing team.

Building closer links between students and staff also enhances a sense of belonging. It helps humanise lecturers and demonstrate that staff care about student wellbeing and success. This should be implemented by recognizing staff efforts formally so that the service roles of faculty members are formally recognized and professionalized.

Universities should also focus on hiring more diverse teaching staff, who can serve as role models, using their experiences to relate to and engage with under-represented students. Students will end up feeling more embedded within the physics community, improving both their sense of belonging and performance.

One practical way to increase diversity in hiring is for institutions to re-evaluate what they value. While securing large grants is valuable, so is advocating for equality, diversity and inclusion; public engagement; and the ability to inspire the next generation of physicists.

Another approach is to establish “departmental action teams” to find tailored solutions to unite undergraduates, postgraduates, teaching and research staff. Such teams identify issues specific to their particular university, and they can gather data through surveying the department to identify trends and recommend practical changes to boost belonging.

Implementing these measures will not only improve the sense of belonging for students from under-represented groups but also cultivate a more inclusive, diverse physics workforce. That in turn will boost the overall research culture, opening up research directions that may have previously been overlooked, and yielding stronger scientific outputs. It is crucial that we do more to support physics students from under-represented groups to create a more diverse physics community. Ultimately, it will benefit physics and society as a whole.

The post Want a strong future for physics? Here’s why we must focus on students from under-represented groups appeared first on Physics World.

Lowering exam stakes could cut the gender grade gap in physics, finds study

30 octobre 2025 à 13:56

Female university students do much better in introductory physics exams if they have the option of retaking the tests. That’s according to a new analysis of almost two decades of US exam results for more than 26,000 students. The study’s authors say it shows that female students benefit from lower-stakes assessments – and that the persistent “gender grade gap” in physics exam results does not reflect a gender difference in physics knowledge or ability.

The study has been carried out by David Webb from the University of California, Davis, and Cassandra Paul from San Jose State University. It builds on previous work they did in 2023, which showed that the gender gap disappears in introductory physics classes that offer the chance for all students to retake the exams. That study did not, however, explore why the offer of a retake has such an impact.

In the new study, the duo analysed exam results from 1997 to 2015 for a series of introductory physics classes at a public university in the US. The dataset included 26,783 students, mostly in biosciences, of whom about 60% were female. Some of the classes let students retake exams while others did not, thereby letting the researchers explore why retakes close the gender gap.

When Webb and Paul examined the data for classes that offered retakes, they found that in first-attempt exams female students slightly outperformed their male counterparts. But male students performed better than female students in retakes.

This, the researchers argue, discounts the notion that retakes close the gender gap by allowing female students to improve their grades. Instead, they suggest that the benefit of retakes is that they lower the stakes of the first exam.

The team then compared the classes that offered retakes with those that did not, which they called high-stakes courses. They found that the gender gap in exam results was much larger in the high-stakes classes than the lower-stakes classes that allowed retakes.

“This suggests that high-stakes exams give a benefit to men, on average, [and] lowering the stakes of each exam can remove that bias,” Webb told Physics World. He thinks that as well as allowing students to retake exams, physics might benefit from not having comprehensive high-stakes final exams but instead “use final exam time to let students retake earlier exams”.

The post Lowering exam stakes could cut the gender grade gap in physics, finds study appeared first on Physics World.

❌