↩ Accueil

Vue normale

Reçu avant avant-hier

Micronozzle could give laser-driven particle accelerators a boost

24 juin 2025 à 14:52

Proton energies achievable in laser accelerators could be tripled by using specially designed micronozzle targets, according to computer simulations done by physicists in Japan and India. In their design, the electric field generated in the micronozzle would be funnelled towards the outgoing protons, allowing the acceleration to proceed for much longer. The researchers believe that the research could be useful in nuclear fusion, hadron therapy and materials science.

Conventional accelerators use oscillating electric fields to drive charged particles to relativistic speeds. The Large Hadron Collider at CERN, for example, uses radio-frequency oscillations to achieve proton energies of nearly 7 TeV.

These accelerators tend to be very large, which limits where they can be built. Laser acceleration, which involves using high-energy laser pulses to accelerate charged particle, offers a way to create much more compact accelerators.

Crucial to inertial confinement

Laser acceleration is crucial to inertial confinement fusion, and high energy proton beams produced by laser accelerators are used in scientific laboratories for a variety of scientific applications including laboratory astrophysics.

The standard techniques for laser acceleration involve firing a laser pulse at a proton target surrounded by metal foil. Solid hydrogen only exists near absolute zero, so the proton target can be a hydrogen-rich compound such as a hydride or a polymer. The femtosecond laser pulse concentrates a huge amount of energy into a tiny area and this instantly turns the target into a plasma. The light’s oscillating electromagnetic field drives electrons through the plasma, leaving behind the much heavier ions and creating a huge electric field that can accelerate protons.

In the new work, physicist Masakatsu Murakami and colleagues at the University of Osaka in Japan, together with researchers at the Indian Institute of Technology Hyderabad, used computer modelling to examine the effect of changing the shape of the metal surrounding the target from a simple planar foil to a two-headed nozzle, with the target placed at the narrowest point. During the first stage of the acceleration process, the wide head of the nozzle behaves like a lens, concentrating the electric field from a wide area to produce an enhanced flow of hot electrons towards the centre. This electric current on the nozzle enhances ablation of protons from the hydrogen rod, kicking them forward into the vacuum.

“Just like a rocket nozzle”

Subsequently, the electrons keep moving through the “skirt” of the nozzle, creating a powerful electric field that, owing to the nozzle’s shape, remains focused on the accelerating proton pulse as it travels away into the vacuum. “With the single hydrogen rod and the single foil, the protons are accelerated only during the laser illumination,” explains Murakami. “However, interestingly with the micronozzle target, the acceleration keeps going even after the laser pulse illumination…Most of the plasma expands in a small volume together with the protons – just like a rocket nozzle,” he says. Whereas the standard proton energies achievable with a laser accelerator today are around 400 MeV, the researchers estimate that their micronozzle design could allow energies into the gigaelectronvolt regime without changing anything else.

Murakami has been studying nuclear fusion for 40 years and believes that “this method will be used for fast ignition of laser fusion”. However, he says, its potential uses go far beyond this. Proton beam therapy generally uses protons with energies of 200–300 MeV to treat cancer by delivering a high dose of radiation to the tumour and a much lower dose to surrounding healthy tissue. “Even higher energy is required to target cancers that are located in deeper parts of the body,” he says. The technique could also be useful for materials science techniques such as proton radiography or for simulation of the physics of astrophysical objects such as neutron stars. “I’m planning to do proof of principle experiments in the near future,” says Murakami. 

Accelerator physicist Nicholas Dover of Imperial College London describes the work as “very interesting,” adding, “This target that they propose is a very complex thing to make. It would be a big project for a target fabrication lab to generate something like this – it’s not something we just cook up in our lab. Having these numerical optimizations is really helpful for us.” He notes, however, that one reason accelerator physicists often use planar targets (essentially pieces of kitchen foil) is the need to replace them in every shot. In scientific applications, this may not matter, he says. Applications in fields like medicine, however, would probably require the development of mass production facilities to fabricate the targets economically.

The research is described in Scientific Reports.

The post Micronozzle could give laser-driven particle accelerators a boost appeared first on Physics World.

Tiny laser delivers high-quality, narrowband light for metrology

18 juin 2025 à 18:00

A new solid-state laser can make a vast number of precise optical measurements each second, while sweeping across a broad range of optical wavelengths. Created by a team led by Qiang Lin at the University of Rochester in the US, the device can be fully integrated onto a single chip.

Optical metrology is a highly versatile technique that uses light to gather information about the physical properties of target objects. It involves illuminating a sample and measuring the results with great precision – using techniques such as interferometry and spectroscopy. In the 1960s, the introduction of lasers and the coherent light they emit boosted the technique to an unprecedented level of precision. This paved the way for advances ranging from optical clocks, to the detection of gravitational waves.

Yet despite the indispensable role they have played so far, lasers have also created a difficult challenge. To ensure the best possible precision, experimentalists much achieve very tight control over the wavelength, phase, polarization and other properties of the laser light. This is very difficult to do within the tiny solid-state laser diodes that are very useful in metrology.

Currently, the light from laser diodes is improved externally using optical modules. This added infrastructure is inherently bulky and it remains difficult to integrate the entire setup onto chip-scale components – which limits the development of small, fast lasers for metrology.

Two innovations

Lin and colleagues addressed this challenge by designing a new laser with two key components. One is a laser cavity that comprises a thin film of lithium niobate. Thanks to the Pockels effect, this material’s refractive index can vary depending on the strength of an applied electric field. This provides control over the wavelength of the light amplified by the cavity.

The other component is a distributed Bragg reflector (DBR), which is a structure containing periodic grooves that create alternating regions of refractive index. With the right spacing of these grooves, a DBR can strongly reflect light at a single, narrow linewidth, while scattering all other wavelengths. In previous studies, lasers were created by etching a DBR directly onto a lithium niobate film – but due to the material’s optical properties, this resulted in a broad linewidth.

“Instead, we developed an ‘extended DBR’ structure, where the Bragg grating is defined in a silica cladding,” explains team member Mingxiao Li at the University of California Santa Barbara. “This allowed for flexible control over the grating strength, via the thickness and etch depth of the cladding. It also leverages silica’s superior etchability to achieve low scattering strength, which is essential for narrow linewidth operation.”

Using a system of integrated electrodes, Lin’s team can adjust the strength of the electric field they applied to the lithium niobate film. This allows them to rapidly tune the wavelengths amplified by the cavity via the Pockels effect. In addition, they used a specially designed waveguide to control the phase of light passing into the cavity. This design enabled them to tune their laser over a broad range of wavelengths, without needing external correction modules to achieve narrow linewidths.

Narrowband performance

Altogether, the laser demonstrated an outstanding performance on a single chip – producing a clean, single wavelength with very little noise. Most importantly, the light had a linewidth of just 167 Hz – the smallest range achieved to date for a single-chip lithium niobate laser. This exceptional performance enabled the laser to rapidly sweep across a bandwidth of over 10 GHz – equivalent to scanning quintillions of points per second.

“These capabilities translated directly into successful applications,” Li describes. “The laser served as the core light source in a high-speed LIDAR system, measuring the velocity of a target 0.4 m away with better than 2 cm distance resolution. The system supports a velocity measurement as high as Earth’s orbital velocity – around 7.91 km/s – at 1 m.” Furthermore, Lin’s team were able to lock their laser’s frequency with a reference gas cell, integrated directly onto the same chip.

By eliminating the need for bulky control modules, the team’s design could now pave the way for the full miniaturization of optical metrology – with immediate benefits for technologies including optical clocks, quantum computers, self-driving vehicles, and many others.

“Beyond these, the laser’s core advantages – exceptional coherence, multifunctional control, and scalable fabrication – position it as a versatile platform for transformative advances in high-speed communications, ultra-precise frequency generation, and microwave photonics,” Lin says.

The new laser is described in Light: Science & Applications.

The post Tiny laser delivers high-quality, narrowband light for metrology appeared first on Physics World.

Development and application of a 3-electrode setup for the operando detection of side reactions in Li-Ion batteries

9 juin 2025 à 11:13

webinar main image

Join us to learn about the development and application of a 3-Electrode setup for the operando detection of side reactions in Li-Ion batteries.

Detecting parasitic side reactions originating both from the cathode active materials (CAMs) and the electrolyte is paramount for developing more stable cell chemistries for Li-ion batteries. This talk will present a method for the qualitative analysis of oxidative electrolyte oxidation, as well as the quantification of released lattice oxygen and transition metal ions (TM ions) from the CAM. It is based on a 3-electrode cell design employing a Vulcan carbon-based sense electrode (SE) that is held at a controlled voltage against a partially delithiated lithium iron phosphate (LFP) counter electrode (CE). At this SE, reductive currents can be measured while polarizing a CAM or carbon working electrode (WE) against the same LFP CE. In voltametric scans, we show how the SE potential can be selected to specifically detect a given side reaction during CAM charge/discharge, allowing, e.g., to discriminate between lattice oxygen, protons, and dissolved TMs. Furthermore, it is shown via On-line Electrochemical Mass Spectrometry (OEMS) that O2 reduction in the here-used LP47 electrolyte consumes ~2.3 electrons/O2. Using this value, the lattice oxygen release deduced from the 3-electrode setup upon charging of the NCA WE is in good agreement with OEMS measurements up to NCA potentials >4.65 VLi. At higher potentials, the contributions from the reduction of TM ions can be quantified by comparing the integrated SE current with the O2 evolution from OEMS

Lennart Reuter
Lennart Reuter

Lennart Reuter is a PhD student in the group of Prof Hubert A Gasteiger at the Chair of Technical Electrochemistry at TUM. His research focused on the interfacial processes in lithium-ion batteries that govern calendar life, cycle stability, and rate capability. He advanced the on-line electrochemical mass spectrometry (OEMS) technique to investigate gas evolution mechanisms from interfacial side reactions at the cathode and anode. His work also explored how SEI formation and graphite structural changes affect Li⁺ transport, using impedance spectroscopy and complementary analysis techniques.

 

Leonhard J Reinschluessel
Leonhard J Reinschluessel

Leonhard J Reinschluessel is currently a PhD candidate at at the Chair of Technical Electrochemistry in the Gasteiger research group at the Technical University of Munich (TUM). His current work encompasses an in-depth understanding of the complex interplay of cathode- and electrolyte degradation mechanisms in lithium-ion batteries using operando lab-based and synchrotron techniques. He received his MSc in chemistry from TUM, where he investigated the mitigation of aging of FeNC-based cathode catalyst layers in PEMFCs in his thesis at the Gasteiger group Electrochemistry at TUM. His research focused on the interfacial processes in lithium-ion batteries that govern calendar life, cycle stability, and rate capability. He advanced the on-line electrochemical mass spectrometry (OEMS) technique to investigate gas evolution mechanisms from interfacial side reactions at the cathode and anode. His work also explored how SEI formation and graphite structural changes affect Li⁺ transport, using impedance spectroscopy and complementary analysis techniques.

The post Development and application of a 3-electrode setup for the operando detection of side reactions in Li-Ion batteries appeared first on Physics World.

Shengxi Huang: how defects can boost 2D materials as single-photon emitters

28 mai 2025 à 17:01
Photo of researchers in a lab at Rice University.
Hidden depths Shengxi Huang (left) with members of her lab at Rice University in the US, where she studies 2D materials as single-photon sources. (Courtesy: Jeff Fitlow)

Everyday life is three dimensional, with even a sheet of paper having a finite thickness. Shengxi Huang from Rice University in the US, however, is attracted by 2D materials, which are usually just one atomic layer thick. Graphene is perhaps the most famous example — a single layer of carbon atoms arranged in a hexagonal lattice. But since it was first created in 2004, all sorts of other 2D materials, notably boron nitride, have been created.

An electrical engineer by training, Huang did a PhD at the Massachusetts Institute of Technology and postdoctoral research at Stanford University before spending five years as an assistant professor at the Pennsylvania State University. Huang has been at Rice since 2022, where she is now an associate professor in the Department of Electrical and Computer Engineering, the Department of Material Science and NanoEngineering, and the Department of Bioengineering.

Her group at Rice currently has 12 people, including eight graduate students and four postdocs. Some are physicists, some are engineers, while others have backgrounds in material science or chemistry. But they all share an interest in understanding the optical and electronic properties of quantum materials and seeing how they can be used, for example, as biochemical sensors. Lab equipment from Picoquant is vital in helping in that quest, as Huang explains in an interview with Physics World.

Why are you fascinated by 2D materials?

I’m an electrical engineer by training, which is a very broad field. Some electrical engineers focus on things like communication and computing, but others, like myself, are more interested in how we can use fundamental physics to build useful devices, such as semiconductor chips. I’m particularly interested in using 2D materials for optoelectronic devices and as single-photon emitters.

What kinds of 2D materials do you study?

The materials I am particularly interested in are transition metal dichalcogenides, which consist of a layer of transition-metal atoms sandwiched between two layers of chalcogen atoms – sulphur, selenium or tellurium. One of the most common examples is molybdenum disulphide, which in its monolayer form has a layer of sulphur on either side of a layer of molybdenum. In multi-layer molybdenum disulphide, the van der Waals forces between the tri-layers are relatively weak, meaning that the material is widely used as a lubricant – just like graphite, which is a many-layer version of graphene.

Why do you find transition metal dichalcogenides interesting?

Transition metal dichalcogenides have some very useful optoelectronic properties. In particular, they emit light whenever the electron and hole that make up an “exciton” recombine. Now because these dichalcogenides are so thin, most of the light they emit can be used. In a 3D material, in contrast, most light is generated deep in the bulk of the material and doesn’t penetrate beyond the surface. Such 2D materials are therefore very efficient and, what’s more, can be easily integrated onto chip-based devices such as waveguides and cavities.

Transition metal dichalcogenide materials also have promising electronic applications, particularly as the active material in transistors. Over the years, we’ve seen silicon-based transistors get smaller and smaller as we’ve followed Moore’s law, but we’re rapidly reaching a limit where we can’t shrink them any further, partly because the electrons in very thin layers of silicon move so slowly. In 2D transition metal dichalcogenides, in contrast, the electron mobility can actually be higher than in silicon of the same thickness, making them a promising material for future transistor applications.

What can such sources of single photons be used for?

Single photons are useful for quantum communication and quantum cryptography. Carrying information as zero and one, they basically function as a qubit, providing a very secure communication channel. Single photons are also interesting for quantum sensing and even quantum computing. But it’s vital that you have a highly pure source of photons. You don’t want them mixed up with “classical photons”, which — like those from the Sun — are emitted in bunches as otherwise the tasks you’re trying to perform cannot be completed.

What approaches are you taking to improve 2D materials as single-photon emitters?

What we do is introduce atomic defects into a 2D material to give it optical properties that are different to what you’d get in the bulk. There are several ways of doing this. One is to irradiate a sample with ions or electrons, which can bombard individual atoms out to generate “vacancy defects”. Another option is to use plasmas, whereby atoms in the sample get replaced by atoms from the plasma.

So how do you study the samples?

We can probe defect emission using a technique called photoluminescence, which basically involves shining a laser beam onto the material. The laser excites electrons from the ground state to an excited state, prompting them to emit light. As the laser beam is about 500-1000 nm in diameter, we can see single photon emission from an individual defect if the defect density is suitable.

Photo of researchers in a lab at Rice University
Beyond the surface Shengxi Huang (second right) uses equipment from PicoQuant to probe 2D materials. (Courtesy: Jeff Fitlow)

What sort of experiments do you do in your lab?

We start by engineering our materials at the atomic level to introduce the correct type of defect. We also try to strain the material, which can increase how many single photons are emitted at a time. Once we’ve confirmed we’ve got the correct defects in the correct location, we check the material is emitting single photons by carrying out optical measurements, such as photoluminescence. Finally, we characterize the purity of our single photons – ideally, they shouldn’t be mixed up with classical photons but in reality, you never have a 100% pure source. As single photons are emitted one at a time, they have different statistical characteristics to classical light. We also check the brightness and lifetime of the source, the efficiency, how stable it is, and if the photons are polarized. In fact, we have a feedback loop: what improvements can we do at the atomic level to get the properties we’re after?

Is it difficult adding defects to a sample?

It’s pretty challenging. You want to add just one defect to an area that might be just one micron square so you have to control the atomic structure very finely. It’s made harder because 2D materials are atomically thin and very fragile. So if you don’t do the engineering correctly, you may accidentally introduce other types of defects that you don’t want, which will alter the defects’ emission.

What techniques do you use to confirm the defects are in the right place?

Because the defect concentration is so low, we cannot use methods that are typically used to characterise materials, such as X-ray photo-emission spectroscopy or scanning electron microscopy. Instead, the best and most practical way is to see if the defects generate the correct type of optical emission predicted by theory. But even that is challenging because our calculations, which we work on with computational groups, might not be completely accurate.

How do your PicoQuant instruments help in that regard?

We have two main pieces of equipment – a MicroTime 100 photoluminescence microscope and a FluoTime 300 spectrometer. These have been customized to form a Hanbury Brown Twiss interferometer, which measures the purity of a single photon source. We also use the microscope and spectrometer to characterise photoluminescence spectrum and lifetime. Essentially, if the material emits light, we can then work out how long it takes before the emission dies down.

Did you buy the equipment off-the-shelf?

It’s more of a customised instrument with different components – lasers, microscopes, detectors and so on — connected together so we can do multiple types of measurement. I put in a request to Picoquant, who discussed my requirements with me to work out how to meet my needs. The equipment has been very important for our studies as we can carry out high-throughput measurements over and over again. We’ve tailored it for our own research purposes basically.

So how good are your samples?

The best single-photon source that we currently work with is boron nitride, which has a single-photon purity of 98.5% at room temperature. In other words, for every 200 photons only three are classical. With transition-metal dichalcogenides, we get a purity of 98.3% at cryogenic temperatures.

What are your next steps?

There’s still lots to explore in terms of making better single-photon emitters and learning how to control them at different wavelengths. We also want to see if these materials can be used as high-quality quantum sensors. In some cases, if we have the right types of atomic defects, we get a high-quality source of single photons, which we can then entangle with their spin. The emitters can therefore monitor the local magnetic environment with better performance than is possible with classical sensing methods.

The post Shengxi Huang: how defects can boost 2D materials as single-photon emitters appeared first on Physics World.

Superconducting microwires detect high-energy particles

23 mai 2025 à 10:10

Arrays of superconducting wires have been used to detect beams of high-energy charged particles. Much thinner wires are already used to detect single photons, but this latest incarnation uses thicker wires that can absorb the large amounts of energy carried by fast-moving protons, electrons, and pions. The new detector was created by an international team led by Cristián Peña at Fermilab.

In a single-photon detector, an array of superconducting nanowires is operated below the critical temperature for superconductivity – with current flowing freely through the nanowires. When a nanowire absorbs a photon it creates a hotspot that temporarily destroys superconductivity and boosts the electrical resistance. This creates a voltage spike across the nanowire, allowing the location and time of the photon detection to be determined very precisely.

“These detectors have emerged as the most advanced time-resolved single-photon sensors in a wide range of wavelengths,” Peña explains. “Applications of these photon detectors include quantum networking and computing, space-to-ground communication, exoplanet exploration and fundamental probes for new physics such as dark matter.”

A similar hotspot is created when a superconducting wire is impacted by a high-energy charged particle. In principle, this could be used to create particle detectors that could be used in experiments at labs such as Fermilab and CERN.

New detection paradigm

“As with photons, the ability to detect charged particles with high spatial and temporal precision, beyond what traditional sensing technologies can offer, has the potential to propel the field of high-energy physics towards a new detection paradigm,” Peña explains.

However, the nanowire single-photon detector design is not appropriate for detecting charged particles. Unlike photons, charged particles do not deposit all of their energy at a single point in a wire. Instead, the energy can be spread out along a track, which becomes longer as particle energy increases. Also, at the relativistic energies reached at particle accelerators, the nanowires used in single-photon detectors are too thin to collect the energy required to trigger a particle detection.

To create their new particle detector, Peña’s team used the latest advances in superconductor fabrication. On a thin film of tungsten silicide, they deposited an 8×8, 2 mm2 array of micron-thick superconducting wires.

Tested at Fermilab

To test out their superconducting microwire single-photon detector (SMSPD), they used it to detect high-energy particle beams generated at the Fermilab Test Beam Facility. These included a 12 GeV beam of protons and 8 GeV beams of electrons and pions.

“Our study shows for the first time that SMSPDs are sensitive to protons, electrons, and pions,” Peña explains. “In fact, they behave very similarly when exposed to different particle types. We measured almost the same detection efficiency, as well as spatial and temporal properties.”

The team now aims to develop a deeper understanding of the physics that unfolds as a charged particle passes through a superconducting microwire. “That will allow us to begin optimizing and engineering the properties of the superconducting material and sensor geometry to boost the detection efficiency, the position and timing precision, as well as optimize for the operating temperature of the sensor,” Peña says. With further improvements SMSPDs to become an integral part of high-energy physics experiments – perhaps paving the way for a deeper understanding of fundamental physics.

The research is described in the Journal of Instrumentation.

The post Superconducting microwires detect high-energy particles appeared first on Physics World.

New coronagraph pushes exoplanet discovery to the quantum limit

19 mai 2025 à 18:21
Diagram of the new coronagraph
How it works Diagram showing simulated light from an exoplanet and its companion star (far left) moving through the new coronagraph. (Courtesy: Nico Deshler/University of Arizona)

A new type of coronagraph that could capture images of dim exoplanets that are extremely close to bright stars has been developed by a team led by Nico Deshler at the University of Arizona in the US. As well as boosting the direct detection of exoplanets, the new instrument could support advances in areas including communications, quantum sensing, and medical imaging.

Astronomers have confirmed the existence of nearly 6000 exoplanets, which are planets that orbit stars other as the Sun. The majority of these were discovered based on their effects on their companion stars, rather than being observed directly. This is because most exoplanets are too dim and too close to their companion stars for the exoplanet light to be differentiated from starlight. That is where a coronagraph can help.

A coronagraph is an astronomical instrument that blocks light from an extremely bright source to allow the observation of dimmer objects in the nearby sky. Coronagraphs were first developed a century ago to allow astronomers to observe the outer atmosphere (corona) of the Sun , which would otherwise be drowned out by light from the much brighter photosphere.

At the heart of a coronagraph is a mask that blocks the light from a star, while allowing light from nearby objects into a telescope. However, the mask (and the telescope aperture) will cause the light to interfere and create diffraction patterns that blur tiny features. This prevents the observation of dim objects that are closer to the star than the instrument’s inherent diffraction limit.

Off limits

Most exoplanets lie within the diffraction limit of today’s coronagraphs and Deshler’s team addressed this problem using two spatial mode sorters. The first device uses a sequence of optical elements to separate starlight from light originating from the immediate vicinity of the star. The starlight is then blocked by a mask while the rest of the light is sent through a second spatial mode sorter, which reconstructs an image of the region surrounding the star.

As well as offering spatial resolution below the diffraction limit, the technique approaches the fundamental limit on resolution that is imposed by quantum mechanics.

“Our coronagraph directly captures an image of the surrounding object, as opposed to measuring only the quantity of light it emits without any spatial orientation,” Deshler describes. “Compared to other coronagraph designs, ours promises to supply more information about objects in the sub-diffraction regime – which lie below the resolution limits of the detection instrument.”

To test their approach, Deshler and colleagues simulated an exoplanet orbiting at a sub-diffraction distance from a host star some 1000 times brighter. After passing the light through the spatial mode sorters, they could resolve the exoplanet’s position – which would have been impossible with any other coronagraph.

Context and composition

The team believe that their technique will improve astronomical images. “These images can provide context and composition information that could be used to determine exoplanet orbits and identify other objects that scatter light from a star, such as exozodiacal dust clouds,” Deshler says.

The team’s coronagraph could also have applications beyond astronomy. With the ability to detect extremely faint signals close to the quantum limit, it could help to improve the resolution of quantum sensors. This could to lead to new methods for detecting tiny variations in magnetic or gravitational fields.

Elsewhere, the coronagraph could help to improve non-invasive techniques for imaging living tissue on the cellular scale – with promising implications in medical applications such as early cancer detection and the imaging of neural circuits. Another potential use could be new multiplexing techniques for optical communications. This would see the coronagraph being used to differentiate between overlapping signals. This has the potential of boosting the rate at which data could be transferred between satellites and ground-based receivers.

The research is described in Optica.

The post New coronagraph pushes exoplanet discovery to the quantum limit appeared first on Physics World.

Electrolysis workstation incorporates mass spectrometry to accelerate carbon-dioxide reduction research

13 mai 2025 à 15:59

The electrochemical reduction of carbon dioxide is used to produce a range of chemical and energy feedstocks including syngas (hydrogen and carbon monoxide), formic acid, methane and ethylene. As well as being an important industrial process, the large-scale reduction of carbon dioxide by electrolysis offers a practical way to capture and utilize carbon dioxide.

As a result, developing new and improved electrochemical processes for carbon-dioxide reduction is an important R&D activity. This work involves identifying which catalyst and electrolyte materials are optimal for efficient production. And when a promising electrochemical system is identified in the lab, the work is not over because the design must be then scaled up to create an efficient and practical industrial process.

Such R&D activities must overcome several challenges in operating and characterizing potential electrochemical systems. These include maintaining the correct humidification of carbon-dioxide gas during the electrolysis process and minimizing the production of carbonates – which can clog membranes and disrupt electrolysis.

While these challenges can be daunting, they can be overcome using the 670 Electrolysis Workstation from US-based Scribner. This is a general-purpose electrolysis system designed to test the materials used in the conversion of electrical energy to fuels and chemical feedstocks – and it is ideal for developing systems for carbon-dioxide reduction.

Turn-key and customizable

The workstation is a flexible system that is both turn-key and customizable. Liquid and gas reactants can be used on one or both of the workstation’s electrodes. Scribner has equipped the 670 Electrolysis Workstation with cells that feature gas diffusion electrodes and membranes from US-based Dioxide Materials. The company specializes in the development of technologies for converting carbon dioxide into fuels and chemicals, and it was chosen by Scribner because Dioxide Materials’ products are well documented in the scientific literature.

The gas diffusion electrodes are porous graphite cathodes through which carbon-dioxide gas flows between input and output ports. The gas can migrate from the graphite into a layer containing a metal catalyst. Membranes are used in electrolysis cells to ensure that only the desired ions are able to migrate across the cell, while blocking the movement of gases.

Two men in a lab
Fully integrated Scribner’s Jarrett Mansergh (left) and Luke Levin-Pompetzki of Hiden Analytical in Scribner’s lab after integrating the electrolysis and mass-spectrometry systems. (Courtesy: Scribner)

The system employs a multi-range  ±20 A and 5 V potentiostat for high-accuracy operation over a wide range of reaction rates and cell sizes. The workstation is controlled by Scribner’s FlowCell™ software, which provides full control and monitoring of test cells and comes pre-loaded with a wide range of experimental protocols. This includes electrochemical impedance spectroscopy (EIS) capabilities up to 20 KHz and cyclic voltammetry protocols – both of which are used to characterize the health and performance of electrochemical systems. FlowCell™ also allows users to set up long duration experiments while providing safety monitoring with alarm settings for the purging of gases.

Humidified gas

The 670 Electrolysis Workstation features a gas handling unit that can supply humidified gas to test cells. Adding water vapour to the carbon-dioxide reactant is crucial because the water provides the protons that are needed to convert carbon dioxide to products such as methane and syngas. Humidifying gas is very difficult and getting it wrong leads to unwanted condensation in the system. The 670 Electrolysis Workstation uses temperature control to minimize condensation. The same degree of control can be difficult to achieve in homemade systems, leading to failure.

The workstation offers electrochemical cells with 5 cm2 and 25 cm2 active areas. These can be used to build carbon-dioxide reduction cells using a range of materials, catalysts and membranes – allowing the performance of these prototype cells to be thoroughly evaluated. By studying cells at these two different sizes, researchers can scale up their electrochemical systems from a preliminary experiment to something that is closer in size to an industrial system. This makes the 670 Electrolysis Workstation ideal for use across university labs, start-up companies and corporate R&D labs.

The workstation can handle, acids, bases and organic solutions. For carbon-dioxide reduction, the cell is operated with a liquid electrolyte on the positive electrode (anode) and gaseous carbon dioxide at the negative electrode (cathode). An electric potential is applied across the electrodes and the product gas comes off the cathode side.

The specific product is largely dependent on the catalyst used at the cathode. If a silver catalyst is used for example, the cell is likely to produce the syngas. If a tin catalyst is used, the product is more likely to be formic acid.

Mass spectrometry

The best way to ensure that the desired products are being made in the cell is to connect the gas output to a mass spectrometer. As a result, Scribner has joined forces with Hiden Analytical to integrate the UK-based company’s HPR-20 mass spectrometer for gas analysis. The Hiden system is specifically configured to perform continuous analysis of evolved gases and vapours from the 670 Electrolysis Workstation.

CO2 reduction cell feature
The Scribner CO2 Reduction Cell Fixture (Courtesy: Scribner)

If a cell is designed to create syngas, for example, the mass spectrometer will determine exactly how much carbon monoxide is being produced and how much hydrogen is being produced. At the same time, researchers can monitor the electrochemical properties of the cell. This allows researchers to study relationships between a system’s electrical performance and the chemical species that it produces.

Monitoring gas output is crucial for optimizing electrochemical processes that minimize negative effects such as the production of carbonates, which is a significant problem when doing carbon dioxide reduction.

In electrochemical cells, carbon dioxide is dissolved in a basic solution. This results in the precipitation of carbonate salts that clog up the membranes in cells, greatly reducing performance. This is a significant problem when scaling up cell designs for industrial use because commercial cells must be very long-lived.

Pulsed-mode operation

One strategy for dealing with carbonates is to operate electrochemical cells in pulsed mode, rather than in a steady state. The off time allows the carbonates to migrate away from electrodes, which minimizes clogging. The 670 Electrolysis Workstation allows users to explore the use of short, second-scale pulses. Another option that researchers can explore is the use of pulses of fresh water to flush carbonates away from the cathode area. These and other options are available in a set of pre-programmed experiments that allow users to explore the mitigation of salt formation in their electrochemical cells.

The gaseous products of these carbonate-mitigation modes can be monitored in real time using Hiden’s mass spectrometer. This allows researchers to identify any changes in cell performance that are related to pulsed operation. Currently, electrochemical and product characteristics can be observed on time scales as short as 100 ms. This allows researchers to fine-tune how pulses are applied to minimize carbonate production and maximize the production of desired gases.

Real-time monitoring of product gases is also important when using EIS to observe the degradation of the electrochemical performance of a cell over time. This provides researchers with a fuller picture of what is happening in a cell as it ages.

The integration of Hiden’s mass spectrometer to the 670 Electrolysis Workstation is the latest innovation from Scribner. Now, the company is working on improving the time resolution of the system so that even shorter pulse durations can be studied by users. The company is also working on boosting the maximum current of the 670 to 100 A.

The post Electrolysis workstation incorporates mass spectrometry to accelerate carbon-dioxide reduction research appeared first on Physics World.

Neutrons differentiate between real and fake antique coins

8 mai 2025 à 09:45
Illustration of neutron tomography
Finding fakes Illustration of how neutrons can pass easily through the metallic regions of an old coin, but are blocked by hydrogen-bearing compounds formed by corrosion. (Courtesy: S Kelley/NIST)

The presence of hydrogen in a sample is usually a bad thing in neutron scattering experiments, but now researchers in the US have turned the tables on the lightest element and used it to spot fake antique coins.

The scattering of relatively slow moving neutrons from materials provides a wide range of structural information. This is because these “cold” neutrons have wavelengths on par with the separations of atoms in a materials. However, materials that contain large amounts of hydrogen-1 nuclei (protons) can be difficult to study because hydrogen is very good at scattering neutrons in random directions – creating a noisy background signal. Indeed, biological samples containing lots of hydrogen are usually “deuterated” – replacing hydrogen with deuterium – before they are placed in a neutron beam.

However, there are some special cases where this incoherent scattering of hydrogen can be useful – measuring the water content of samples, for example.

Surfeit of hydrogen

Now, researchers in the US and South Korea have used a neutron beam to differentiate between genuine antique coins and fakes. The technique relies on the fact that the genuine coins have suffered corrosion that has resulted in the inclusion of hydrogen-bearing compounds within the coins.

Led by Youngju Kim and Daniel Hussey at the National Institute of Standards and Technology (NIST) in Colorado, the team fired a parallel beam of neutrons through individual coins (see figure). The particles travel with ease through a coin’s original metal, but tend to be scattered by the hydrogen-rich corrosion inclusions. This creates a 2D pattern of high and low intensity regions on a neutron-sensitive screen behind the coin. The coin can be rotated and a series of images taken. Then, the researchers used computed tomography to create a 3D image showing the corroded regions of a coin.

The team used this neutron tomography technique to examine an authentic 19th century coin that was recovered from a shipwreck, and on a coin that is known to be a replica. Although both coins had surface corrosion, the corrosion extended much deeper into the bulk of the authentic coin than it did in the replica.

The researchers also used a separate technique called neutron grating interferometry to characterize the pores in the surfaces of the coins. Pores are common on the surface of coins that have been buried or submerged. Authentic antique coins are often found buried or submerged, whereas replica coins will be buried or submerged to make them look more authentic.

Small-angle scattering

Neutron grating interferometry looks at the small-angle scattering of neutrons from a sample and focuses on structures that range in size from about 1 nm to 1 micron.

The team found that the authentic coin had many more tiny pores than the replica coin, which was dominated by much larger (millimetre scale) pores.

This observation was expected because when a coin is buried or submerged, chemical reactions cause metals to leach out of its surface, creating millimetre-sized pores. As time progresses, however, further chemical reactions cause corrosion by-products such as copper carbonates to fill in the pores. The result is that the pores in the older authentic coin are smaller than the pores in the newer replica coin.

The team now plans to expand its study to include more Korean coins and other metallic artefacts. The techniques could also be used to pinpoint corrosion damage in antique coins, allowing these areas to be protected using coatings.

As well as being important to coin collectors and dealers, the ability to verify the age of coins is of interest to historians and economists – who use the presence of coins in their research.

The study was done using neutrons from NIST’s research reactor in Maryland. That facility is scheduled to restart in 2026 so the team plans to continue its investigation using a neutron source in South Korea.

The research is described in Scientific Reports.

The post Neutrons differentiate between real and fake antique coins appeared first on Physics World.

Quantum twisting microscope measures phasons in cryogenic graphene

5 mai 2025 à 11:25

By adapting their quantum twisting microscope to operate at cryogenic temperatures, researchers have made the first observations of a type of phonon that occurs in twisted bilayer graphene.  These “phasons” could have implications for the electron dynamics in these materials.

Graphene is a layer of carbon just one atom thick and it has range of fascinating and useful properties – as do bilayer and multilayer versions of graphene. Since 2018, condensed-matter physicists have been captivated by the intriguing electron behaviour in two layers of graphene that are rotated with respect to each other.

As the twist angle deviates from zero, the bilayer becomes a moiré superlattice. The emergence of this structure influences electronic properties of the material, which can transform from a semiconductor to a superconductor.

In 2023, researchers led by Shahal Ilani at the Weizmann Institute of Science in Israel developed a quantum twisting microscope to study these effects. Based on a scanning probe microscope with graphene on the substrate and folded over the tip such as to give it a flat end, the instrument allows precise control over the relative orientation between two graphene surfaces – in particular, the twist angle.

Strange metals

Now Ilani and an international team have operated the microscope at cryogenic temperatures for the first time. So far, their measurements support the current understanding of how electrons couple to phasons, which are specific modes of phonons (quantized lattice vibrations). Characterizing this coupling could help us understand “strange metals”, whose electrical resistance increases at lower temperatures – which is the opposite of normal metals.

There are different types of phonons, such as acoustic phonons where atoms within the same unit cell oscillate in phase with each other, and optical phonons where they oscillate out of phase. Phasons are phonons involving lattice oscillations in one layer that are out of phase or antisymmetric with oscillations in the layer above.

“This is the one that turns out to be very important for how the electrons behave between the layers because even a small relative displacement between the two layers affects how the electrons go from one layer to the other,” explains Weizmann’s John Birkbeck as he describes the role of phasons in twisted bilayer graphene materials.

For most phonons the coupling to electrons is weaker the lower the energy of the phonon mode. However for twisted bilayer materials, theory suggests that phason coupling to electrons increases as the twist between the two layers approaches alignment due to the antisymmetric motion of the two layers and the heightened sensitivity of interlayer tunnelling to small relative displacements.

Unique perspective

“There are not that many tools to see phonons, particularly in moiré systems” adds Birkbeck. This is where the quantum twisting microscope offers a unique perspective. Thanks to the atomically flat end of the tip, electrons can tunnel between the layer on the substrate and the layer on the tip whenever there is a matching state in terms of not just energy but also momentum too.

Where there is a momentum mismatch, tunnelling between tip and substrate is still possible by balancing the mismatch with the emission or absorption of a phonon. By operating at cryogenic temperatures, the researchers were able to get a measure of these momentum transactions and probe the electron phonon coupling too.

“What was interesting from this work is not only that we could image the phonon dispersion, but also we can quantify it,” says Birkbeck stressing the absolute nature of these quantified electron phonon coupling-strength measurements.

The measurements are the first observations of phasons in twisted bilayer graphene and reveal a strong increase in coupling as the layers approach alignment, as predicted by theory. However, the researchers were not able to study angles smaller than 6°. Below this angle the tunnelling resistance is so low that the contact resistance starts to warp readings, among other limiting factors.

Navigating without eyes

A certain amount of technical adjustment was needed to operate the tool at cryogenic temperatures, not least to “to navigate without eyes” because the team was not able to incorporate their usual optics with the cryogenic set up. The researchers hope that with further technical adjustments they will be able to use the quantum twisting microscope in cryogenic conditions at the magic angle of 1.1°, where superconductivity occurs.

Pablo Jarillo Herrero, who led the team at MIT that first reported superconductivity in twisted bilayer graphene in 2018 but was not involved in this research describes it as an “interesting study” adding, “I’m looking forward to seeing more interesting results from low temperature QTM research!”

Hector Ochoa De Eguileor Romillo at Columbia University in the US, who proposed a role for phason–electron interactions in these materials in 2019, but was also not involved in this research describes it as “a beautiful experiment”. He adds, “I think it is fair to say that this is the most exciting experimental technique of the last 15 years or so in condensed matter physics; new interesting data are surely coming.”

The research is described in Nature.

The post Quantum twisting microscope measures phasons in cryogenic graphene appeared first on Physics World.

Superconducting device delivers ultrafast changes in magnetic field

23 avril 2025 à 18:12

Precise control over the generation of intense, ultrafast changes in magnetic fields called “magnetic steps” has been achieved by researchers in Hamburg, Germany. Using ultrashort laser pulses, Andrea Cavalleri and colleagues at the Max Planck Institute for the Structure and Dynamics of Matter disrupted the currents flowing through a superconducting disc. This alters the superconductor’s local magnetic environment on very short timescales – creating a magnetic step.

Magnetic steps rise to their peak intensity in just a few picoseconds, before decaying more slowly in several nanoseconds. They are useful to scientists because they rise and fall on timescales far shorter than the time it takes for materials to respond to external magnetic fields. As a result, magnetic steps could provide fundamental insights into the non-equilibrium properties of magnetic materials, and could also have practical applications in areas such as magnetic memory storage.

So far, however, progress in this field has been held back by technical difficulties in generating and controlling magnetic steps on ultrashort timescales. Previous strategies  have employed technologies including microcoils, specialized antennas, and circularly polarized light pulses. However, each of these schemes offer a limited degree of control over the properties of the magnetic steps they generated.

Quenching supercurrents

Now, Cavalleri’s team has developed a new technique that involves the quenching of currents in a superconductor. Normally, these “supercurrents” will flow indefinitely without losing energy, and will act to expel any external magnetic fields from the superconductor’s interior. However, if these currents are temporarily disrupted on ultrashort timescales, a sudden change will be triggered in the magnetic field close to the superconductor – which could be used to create a magnetic step.

To create this process, Cavalleri and colleagues applied ultrashort laser pulses to a thin, superconducting disc of yttrium barium copper oxide (YBCO), while also exposing the disc to an external magnetic field.

To detect whether magnetic steps had been generated, they placed a crystal of the semiconductor gallium phosphide in the superconductor’s vicinity. This material exhibits an extremely rapid Faraday response. This involves the rotation of the polarization of light passing through the semiconductor in response to changes in the local magnetic field. Crucially, this rotation can occur on sub-picosecond timescales.

In their experiments, researchers monitored changes to the polarization of an ultrashort “probe” laser pulse passing through the semiconductor shortly after they quenched supercurrents in their YBCO disc using a separate ultrashort “pump” laser pulse.

“By abruptly disrupting the material’s supercurrents using ultrashort laser pulses, we could generate ultrafast magnetic field steps with rise times of approximately one picosecond – or one trillionth of a second,” explains team member Gregor Jotzu.

Broadband step

This was used to generate an extremely broadband magnetic step, which contains frequencies ranging from sub-gigahertz to terahertz. In principle, this should make the technique suitable for studying magnetization in a diverse variety of materials.

To demonstrate practical applications, the team used these magnetic steps to control the magnetization of a ferrimagnet. Such a magnet has opposing magnetic moments, but has a non-zero spontaneous magnetization in zero magnetic field.

When they placed a ferrimagnet on top of their superconductor and created a magnetic step, the step field caused the ferrimagnet’s magnetization to rotate.

For now, the magnetic steps generated through this approach do not have the speed or amplitude needed to switch materials like a ferrimagnet between stable states. Yet through further tweaks to the geometry of their setup, the researchers are confident that this ability may not be far out of reach.

“Our goal is to create a universal, ultrafast stimulus that can switch any magnetic sample between stable magnetic states,” Cavalleri says. “With suitable improvements, we envision applications ranging from phase transition control to complete switching of magnetic order parameters.”

The research is described in Nature Photonics.

The post Superconducting device delivers ultrafast changes in magnetic field appeared first on Physics World.

❌