↩ Accueil

Vue normale

Reçu avant avant-hier

Tim Berners-Lee: why the inventor of the Web is ‘optimistic, idealistic and perhaps a little naïve’

29 octobre 2025 à 11:00

It’s rare to come across someone who’s been responsible for enabling a seismic shift in society that has affected almost everyone and everything. Tim Berners-Lee, who invented the World Wide Web, is one such person. His new memoir This is for Everyone unfolds the history and development of the Web and, in places, of the man himself.

Berners-Lee was born in London in 1955 to parents, originally from Birmingham, who met while working on the Ferranti Mark 1 computer and knew Alan Turing. Theirs was a creative, intellectual and slightly chaotic household. His mother could maintain a motorbike with fence wire and pliers, and was a crusader for equal rights in the workplace. His father – brilliant and absent minded – taught Berners-Lee about computers and queuing theory. A childhood of camping and model trains, it was, in Berners-Lee’s view, idyllic.

Berners-Lee had the good fortune to be supported by a series of teachers and managers who recognized his potential and unique way of working. He studied physics at the University of Oxford (his tutor “going with the flow” of Berners-Lee’s unconventional notation and ability to approach problems from oblique angles) and built his own computer. After graduating, he married and, following a couple of jobs, took a six-month placement at the CERN particle-physics lab in Geneva in 1985.

This placement set “a seed that sprouted into a tool that shook up the world”. Berners-Lee saw how difficult it was to share information stored in different languages in incompatible computer systems and how, in contrast, information flowed easily when researchers met over coffee, connected semi-randomly and talked. While at CERN, he therefore wrote a rough prototype for a program to link information in a type of web rather than a structured hierarchy.

Back at CERN, Tim Berners-Lee developed his vision of a “universal portal” to information.

The placement ended and the program was ignored, but four years later Berners-Lee was back at CERN. Now divorced and soon to remarry, he developed his vision of a “universal portal” to information. It proved to be the perfect time. All the tools necessary to achieve the Web – the Internet, address labelling of computers, network cables, data protocols, the hypertext language that allowed cross-referencing of text and links on the same computer – had already been developed by others.

Berners-Lee saw the need for a user-friendly interface, using hypertext that could link to information on other computers across the world. His excitement was “uncontainable”, and according to his line manager “few of us if any could understand what he was talking about”. But Berners-Lee’s managers supported him and freed his time away from his actual job to become the world’s first web developer.

Having a vision was one thing, but getting others to share it was another. People at CERN only really started to use the Web properly once the lab’s internal phone book was made available on it. As a student at the time, I can confirm that it was much, much easier to use the Web than log on to CERN’s clunky IBM mainframe, where phone numbers had previously been stored.

Wider adoption relied on a set of volunteer developers, working with open-source software, to make browsers and platforms that were attractive and easy to use. CERN agreed to donate the intellectual property for web software to the public domain, which helped. But the path to today’s Web was not smooth: standards risked diverging and companies wanted to build applications that hindered information sharing.

Feeling the “the Web was outgrowing my institution” and “would be a distraction” to a lab whose core mission was physics, Berners-Lee moved to the Massachusetts Institute of Technology in 1994. There he founded the World Wide Web Consortium (W3C) to ensure consistent, accessible standards were followed by everyone as the Web developed into a global enterprise. The progression sounds straightforward although earlier accounts, such as James Gillies and Robert Caillau’s 2000 book How the Web Was Born, imply some rivalry between institutions that is glossed over here.

Initially inclined to advise people to share good things and not search for bad things, Berners-Lee had reckoned without the insidious power of “manipulative and coercive” algorithms on social networks

The rest is history, but not quite the history that Berners-Lee had in mind. By 1995 big business had discovered the possibilities of the Web to maximize influence and profit. Initially inclined to advise people to share good things and not search for bad things, Berners-Lee had reckoned without the insidious power of “manipulative and coercive” algorithms on social networks. Collaborative sites like Wikipedia are closer to his vision of an ideal Web; an emergent good arising from individual empowerment. The flip side of human nature seems to come as a surprise.

The rest of the book brings us up to date with Berners-Lee’s concerns (data, privacy, misuse of AI, toxic online culture), his hopes (the good use of AI), a third marriage and his move into a data-handling business. There are some big awards and an impressive amount of name dropping; he is excited by Order of Merit lunches with the Queen and by sitting next to Paul McCartney’s family at the opening ceremony to the London Olympics in 2012. A flick through the index reveals names ranging from Al Gore and Bono to Lucien Freud. These are not your average computing technology circles.

There are brief character studies to illustrate some of the main players, but don’t expect much insight into their lives. This goes for Berners-Lee too, who doesn’t step back to particularly reflect on those around him, or indeed his own motives beyond that vision of a Web for all enabling the best of humankind. He is firmly future focused.

Still, there is no-one more qualified to describe what the Web was intended for, its core philosophy, and what caused it to develop to where it is today. You’ll enjoy the book whether you want an insight into the inner workings that make your web browsing possible, relive old and forgotten browser names, or see how big tech wants to monetize and monopolize your online time. It is an easy read from an important voice.

The book ends with a passionate statement for what the future could be, with businesses and individuals working together to switch the Web from “the attention economy to the intention economy”. It’s a future where users are no longer distracted by social media and manipulated by attention-grabbing algorithms; instead, computers and services do what users want them to do, with the information that users want them to have.

Berners-Lee is still optimistic, still an incurable idealist, still driven by vision. And perhaps still a little naïve too in believing that everyone’s values will align this time.

  • 2025 Macmillan 400pp £25.00/$30.00hb

The post Tim Berners-Lee: why the inventor of the Web is ‘optimistic, idealistic and perhaps a little naïve’ appeared first on Physics World.

Influential theoretical physicist and Nobel laureate Chen-Ning Yang dies aged 103

21 octobre 2025 à 15:31

The Chinese particle physicist Chen-Ning Yang died on 18 October at the age of 103. Yang shared half of the 1957 Nobel Prize for Physics with Tsung-Dao Lee for their theoretical work that overturned the notion that parity is conserved in the weak force – one of the four fundamental forces of nature.

Born on 22 September 1922 in Hefei, China, Yang competed a BSc at the National Southwest Associated University in Kunming in 1942. After finishing an MSc in statistical physics at Tsinghua University two years later, in 1945 he moved to the University of Chicago in the US as part of a government-sponsored programme. He received his PhD in physics in 1948 working under the guidance of Edward Teller.

In 1949 Yang moved to the Institute for Advanced Study in Princeton, where he made pioneering contributions to quantum field theory, wotrking together with Robert Mills. In 1953 they proposed the Yang-Mills theory, which became a cornerstone of the Standard Model of particle physics.

The ‘Wu experiment’

It was also at Princeton where Yang began a fruitful collaboration with Lee, who died last year aged 97. Their work on parity – a property of elementary particles that expresses their behaviour upon reflection in a mirror – led to the duo winning the Nobel prize.

In the early 1950s, physicists had been puzzled by the decays of two subatomic particles, known as tau and theta, which are identical except that the tau decays into three pions with a net parity of -1, while a theta particle decays into two pions with a net parity of +1.

There were two possible explanations: either the tau and theta are different particles or that parity in the weak interaction is not conserved with Yang and Lee proposing various ways to test their ideas (Phys. Rev. 104 254).

This “parity violation” was later proved experimentally by, among others, Chien-Shiung Wu at Columbia University. She carried out an experiment based on the radioactive decay of unstable cobalt-60 nuclei into nickel-60 – what became known as the “Wu experiment”. For their work, Yang, who was 35 at the time, shared the 1957 Nobel Prize for Physics with Lee.

Influential physicist

In 1965 Yang moved to Stony Brook University, becoming the first director of the newly founded Institute for Theoretical Physics, which is now known as the C N Yang Institute for Theoretical Physics. During this time he also contributed to advancing science and education in China, setting up the Committee on Educational Exchange with China – a programme that has sponsored some 100 Chinese scholars to study in the US.

In 1997, Yang returned to Beijing where he became an honorary director of the Centre for Advanced Study at Tsinghua University. He then retired from Stony Brook in 1999, becoming a professor at Tsinghua University. During his time in the US, Yang obtained US citizenship, but renounced it in 2015.

More recently, Yang was involved in debates over whether China should build the Circular Electron Positron Collider (CEPC) – a huge 100 km circumference underground collider that would study the Higgs boson in unprecented detail and be a successor to CERN’s Large Hadron Collider. Yang took a sceptical view calling it “inappropriate” for a developing country that is still struggling with “more acute issues like economic development and environment protection”.

Yang also expressed concern that the science performed on the CEPC is just “guess” work and without guaranteed results. “I am not against the future of high-energy physics, but the timing is really bad for China to build such a super collider,” he noted in 2016. “Even if they see something with the machine, it’s not going to benefit the life of Chinese people any sooner.”

Lasting legacy

As well as the Nobel prize, Yang won many other awards such as the US National Medal of Science in 1986, the Einstein Medal in 1995, which is presented by the Albert Einstein Society in Bern, and the American Physical Society’s Lars Onsager Prize in 1990.

“The world has lost one of the most influential physicists of the modern era,” noted Stony Brook president Andrea Goldsmith in a statement. “His legacy will continue through his transformational impact on the field of physics and through the many colleagues and students influenced by his teaching, scholarship and mentorship.”

The post Influential theoretical physicist and Nobel laureate Chen-Ning Yang dies aged 103 appeared first on Physics World.

Theoretical physicist Michael Berry wins 2025 Isaac Newton Medal and Prize

13 octobre 2025 à 12:45
Michael Berry
Quantum pioneer: Michael Berry is best known for his work in the 1980s on the Berry Phase. (Courtesy: Michael Berry)

The theoretical physicist Michael Berry from the University of Bristol has won the 2025 Isaac Newton Medal and Prize for his “profound contributions across mathematical and theoretical physics in a career spanning over 60 years”. Presented by the Institute of Physics (IOP), which publishes Physics World, the international award is given annually for “world-leading contributions to physics by an individual of any nationality”.

Born in 1941 in Surrey, UK, Berry earned a BSc in physics from the University of Exeter in 1962 and a PhD from the University of St Andrews in 1965. He then moved to Bristol, where he has remained for the rest of his career.

Berry is best known for his work in the 1980s in which he showed that, under certain conditions, quantum systems can acquire what is known as a geometric phase. He was studying quantum systems in which the Hamiltonian describing the system is slowly changed so that it eventually returns to its initial form.

Berry showed that the adiabatic theorem widely used to describe such systems was incomplete and that a system acquires a phase factor that depends on the path followed, but not on the rate at which the Hamiltonian is changed. This geometric phase factor is now known as the Berry phase.

Over his career Berry, has written some 500 papers across a wide number of topics. In physics, Berry’s ideas have applications in condensed matter, quantum information and high-energy physics, as well as optics, nonlinear dynamics, and atomic and molecular physics. In mathematics, meanwhile, his work forms the basis for research in analysis, geometry and number theory.

Berry told Physics World that the award is “unexpected recognition for six decades of obsessive scribbling…creating physics by seeking ‘claritons’ – elementary particles of sudden understanding – and evading ‘anticlaritons’ that annihilate them” as well as “getting insights into nature’s physics” such as studying tidal bores, tsunamis, rainbows and “polarised light in the blue sky”.

Over the years, Berry has won a wide number of other honours, including the IOP’s Dirac Medal and the Royal Medal from the Royal Society, both awarded in 1990. He was also given the Wolf Prize for Physics in 1998 and the 2014 Lorentz Medal from the Royal Netherlands Academy of Arts and Sciences. In 1996 he received a knighthood for his services to science.

Berry will also be a speaker at the IOP’s International Year of Quantum celebrations on 4 November.

Celebrating success

Berry’s latest honour forms part of the IOP’s wider 2025 awards, which recognize everyone from early-career scientists and teachers to technicians and subject specialists. Other winners include Julia Yeomans, who receives the Dirac Medal and Prize for her work highlighting the relevance of active physics to living matter.

Lok Yiu Wu, meanwhile, receives Jocelyn Bell Burnell Medal and Prize for her work on the development of a novel magnetic radical filter device, and for ongoing support of women and underrepresented groups in physics.

In a statement, IOP president Michele Dougherty congratulated all the winners. “It is becoming more obvious that the opportunities generated by a career in physics are many and varied – and the potential our science has to transform our society and economy in the modern world is huge,” says Dougherty. “I hope our winners appreciate they are playing an important role in this community, and know how proud we are to celebrate their successes.”

The full list of 2025 award winners is available here.

The post Theoretical physicist Michael Berry wins 2025 Isaac Newton Medal and Prize appeared first on Physics World.

John Clarke, Michel Devoret and John Martinis win the 2025 Nobel Prize for Physics

7 octobre 2025 à 11:52

John Clarke, Michel Devoret and John Martinis share the 2025 Nobel Prize for Physics “for the discovery of macroscopic quantum mechanical tunnelling and energy quantization in an electric circuit”. 

The award includes a SEK 11m prize ($1.2m), which is shared equally by the winners. The prize will be presented at a ceremony in Stockholm on 10 December.

The prize was announced this morning by members of the Royal Swedish Academy of Science. Olle Eriksson of Uppsala University and chair of the Nobel Committee for Physics commented, “There is no advanced technology today that does not rely on quantum mechanics.”

Göran Johansson of Chalmers University of Technology explained that the three laureates took quantum tunnelling from the microscopic world and onto superconducting chips, allowing physicists to study quantum physics and ultimately create quantum computers.

Speaking on the telephone, John Clarke said of his win, “To put it mildly, it was the surprise of my life,” adding “I am completely stunned. It had never occurred to me that this might be the basis of a Nobel prize.” On the significance of the trio’s research, Clarke said, “The basis of quantum computing relies to quite an extent on our discovery.”

As well as acknowledging the contributions of Devoret and Martinis, Clarke also said that their work was made possible by the work of Anthony Leggett and Brian Josephson – who laid the groundwork for their work on tunnelling in superconducting circuits. Leggett and Josephson are previous Nobel winners.

As well as having scientific significance, the trio’s work has led to the development of nascent commercial quantum computers that employ superconducting circuits. Physicist and tech entrepreneur Ilana Wisby, who co-founded Oxford Quantum Circuits, told Physics World, “It’s such a brilliant and well-deserved recognition for the community”.

A life in science

Clarke was born in 1942 in Cambridge, UK. He received his BA in physics from the University of Cambridge in 1964 before carrying out a PhD at Cambridge in 1968. He then moved to the University of California, Berkeley, to carry out a postdoc before joining the physics faculty in 1969 where he has remained since.

Devoret was born in Paris, France in 1953. He graduated from Ecole Nationale Superieure des Telecommunications in Paris in 1975 before earning a PhD from the University of Paris, Orsay, in 1982. He then moved to the University of California, Berkeley, to work in Clarke’s group collaborating with Martinis who was a graduate student at the time. In 1984 Devoret returned to France to start his own research group at the Commissariat à l’Energie Atomique in Saclay (CEA-Saclay) before heading to the US to Yale University in 2002. In 2024 he moved to the University of California, Santa Barbara, and also became chief scientist at Google Quantum AI.

Martinis was born in the US in 1958. He received a BS in physics in 1980 and a PhD in physics both from the University of California, Berkeley. He then carried out postdocs at CEA-Saclay, France, and the National Institute of Standards and Technology in Boulder, Colorado, before moving to the University of California, Santa Barbara, in 2004. In 2014 Martinis and his team joined Google with the aim of building the first useful quantum computer before he moved to Australia in 2020 to join the start-up Silicon Quantum Computing. In 2022 he co-founded the company Qolab, of which he is currently the chief technology officer.

The trio did its prizewinning work in the mid-1980s at the University of California, Berkeley. At the time Devoret was a postdoctoral fellow and Martinis was a graduate student – both working for Clarke. They were looking for evidence of macroscopic quantum tunnelling (MQT) in a device called a Josephson junction. This comprises two pieces of superconductor that are separated by an insulating barrier. In 1962 the British physicist Brian Josephson predicted how the Cooper pairs of electrons that carry current in a superconductor can tunnel across the barrier unscathed. This Josephson effect was confirmed experimentally in 1963.

Single wavefunction

The lowest-energy (ground) state of a superconductor is a macroscopic quantum state in which all Cooper pairs are described by a single quantum-mechanical wavefunction. In the late 1970s, the British–American physicist Anthony Leggett proposed that the tunnelling of this entire macroscopic state could be observed in a Josephson junction.

The idea is to put the system into a metastable state in which electrical current flows without resistance across the junction – resulting in zero voltage across the junction. If the system is indeed a macroscopic quantum state, then it should be able to occasionally tunnel out of this metastable state, resulting in a voltage across the junction.

This tunnelling can be observed by increasing the current through the junction and measuring the current at which a voltage occurs – obtaining an average value over many such measurements. As the temperature of the device is reduced, this average current increases – something that is expected regardless of whether the system is in a macroscopic quantum state.

However, at very low temperatures the average current becomes independent of temperature, which is the signature of macroscopic quantum tunnelling that Martinis, Devoret and Clarke were seeking. Their challenge was to reduce the noise in their experimental apparatus, because noise has a similar effect as tunnelling on their measurements.

Multilevel system

As well as observing the signature of tunnelling, they were also able to show that the macroscopic quantum state exists in several different energy states. Such a multilevel system is essentially a macroscopic version of an atom or nucleus, with its own spectroscopic structure.

The noise-control techniques developed by the trio to observe MQT and the fact that a Josephson junction can function as a macroscopic multilevel quantum system have led to the development of superconducting quantum bits (qubits) that form the basis of some nascent quantum computers.

The post John Clarke, Michel Devoret and John Martinis win the 2025 Nobel Prize for Physics appeared first on Physics World.

The top five physics Nobel prizes of the 21st century revealed

3 octobre 2025 à 12:00

With the 2025 Nobel Prize for Physics due to be unveiled on Tuesday 7 October, Physics World has been getting in the mood by speculating who might win. It’s a prediction game we have fun with every year – and you can check out our infographic to make your own call.

Quantum physics is our hot favourite this time round – it’s the International Year of Quantum Science and Technology and the Nobel Committee for Physics aren’t immune to wider events. But whoever wins, you know that the prize will have been very carefully considered by committee members.

Over the 125 years since the prize was first awarded, almost every seminal finding in physics has been honoured – from the discovery of the electron, neutrino and positron to the development of quantum mechanics and the observation of high-temperature superconductivity.

But what have been the most significant physics prizes of the 21st century? I’m including 2000 as part of this century (ignoring pedants who say it didn’t start till 1 January 2001). During that time, the Nobel Prize for Physics has been awarded 25 times and gone to 68 different people, averaging out at about 2.7 people per prize.

Now, my choice is entirely subjective, but I reckon the most signficant prizes are those that:

  • are simple to understand;
  • were an experimental or theoretical tour-de-force;
  • have long-term implications for science and open new paths;
  • expose deeper questions at their heart;
  • were on people’s bucket lists and/or have long, historical links;
  • were won by people we’d heard of at the time;
  • are of wider interest to non-physicists or those with only a passing interest in the subject.

So with that in mind, here’s my pick of the five top physics Nobel prizes of the 21st century. You’ll probably disagree violently with my choice so e-mail us with your thoughts.

5. Neutrino oscillation – 2015 prize

Tiny success The SuperKamiokande detector in Japan, where neutrino oscillations were first spotted, led to the 2015 Nobel Prize for Physics to Takaaki Kajita and Art McDonald. (Courtesy: Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo)

Coming in at number five in our list of top physics Nobels of the 21st century is the discovery of neutrino oscillation, which went to Takaaki Kajita and Art McDonald in 2015. The neutrino was first hypothesized by Wolfgang Pauli back in 1930 as “a desperate remedy” to the fact that energy didn’t seem to be conserved when a nucleus emits an electron via beta decay. Fred Reines and Clyde Cowan had won a Nobel prize in 1995 for the original discovery of neutrinos themselves, which are chargeless particles that interact with matter via the weak force and are fiendishly hard to detect.

But what Kajita (at the Super-Kamikande experiment in Japan) and McDonald (at the Sudbury Neutrino Observatory in Canada) had done is to see them switch, or “oscillate”, from one type to another. Their work proved that these particles, which physicists had assumed to be massless, do have mass after all. This was at odds with the Standard Model of particle physics – and isn’t it fun when physics upends conventional wisdom?

What’s more, the discovery of neutrino oscillation explained why Ray Davies and John Bahcall had seen only a third of the solar neutrinos predicted by theory in their famous experiment of 1964. This discrepancy arose because solar neutrinos are oscillating between flavours as they travel to the Earth – and their experiment had detected only a third as it was sensitive mainly to electron neutrinos, not the other types.

4. Bose–Einstein condensation – 2001 prize

A Bose–Einstein condensate emerges from a cloud of cold rubidium atoms
Cool finding The first Bose–Einstein condensate (BEC) was created in 1995 from a cloud of cold rubidium atoms by Eric Cornell and Carl Wieman, with the “spike” in the density of atoms indicating many atoms occupying the same quantum state – the signature of a BEC. Cornell and Wieman won the 2001 Nobel Prize for Physics along with Wolfgang Ketterle, who made a BEC a few months later (Courtesy: NIST/JILA/CU-Boulder)

At number four in our list of the best physics Nobel prizes of the 21st century is the 2001 award, which went to Eric Cornell, Wolfgang Ketterle and Carl Wieman for creating the first Bose–Einstein condensates (BECs). I love the idea that Cornell and Wieman created a new state of matter – in which particles are locked together in their lowest quantum state – at exactly 10.54 a.m. on Monday 5 June 1995 at the JILA laboratory in Boulder, Colorado.

First envisaged by Satyendra Nath Bose and Albert Einstein in 1924, Cornell and Wieman created the first BEC by cooling 2000 rubidium-87 atoms to 170nK using the then new techniques of laser and evaporative cooling. Within a few months, Wolfgang Ketterle over at the Massachusetts Institute of Technology also made a BEC from 500,000 sodium-23 atoms at 2 μK.

Since then hundreds of groups around the world have created BECs, which have been used for everything from slowing light to making “atom lasers” and even modelling the behaviour of black holes. Moreover, the interactions between the atoms can be finely controlled, meaning BECs can be used to simulate properties of condensed-matter systems that are extremely difficult – or impossible – to probe in real materials.

3. Higgs boson – 2013 prize

Francois Englert and Peter Higgs.
Particle pioneers Peter Higgs (right) in the CERN auditorium with François Englert on 4 July 2012 when the discovery of the Higgs boson was announced, for which the pair won the 2013 Nobel Prize for Physics. (Courtesy: CERN/Maximilien Brice)

Coming in at number three is the 2013 prize, which went to François Englert and the late Peter Higgs for discovering the mechanism by which subatomic particles get mass. Their work was confirmed in 2012 by the discovery of the so-called Higgs boson at the ATLAS and CMS experiments at CERN’s Large Hadron Collider.

Higgs and Englert didn’t, of course, win for detecting the Higgs boson, although the Nobel citation credits the ATLAS and CMS teams in its citation. What they were being credited for was work done back in the early 1960s when they published papers independently of each other that provided a mechanism by which particles can have the masses we observe.

Higgs had been studying spontaneous symmetry breaking, which led to the notion of massless, force-carrying particles, known as Goldstone bosons. But what Higgs realized was that Goldstone bosons don’t necessarily occur when a symmetry is spontaneously broken – they could be reinterpreted as an additional quantum (polarization) state of a force-carrying particle.

The leftover terms in the equations represented a massive particle – the Higgs boson – avoiding the need for a massless unobserved particle. Writing in his now-famous 1964 paper (Phys. Rev. Lett. 13 508), Higgs highlighted the possibility of a massive spin-zero boson, which is what was discovered at CERN in 2012.

That work probably got more media attention than all Nobel prizes this century, because who doesn’t love a huge international collaboration tracking down a particle on the biggest physics experiment of all time? Especially as the Standard Model doesn’t predict what its mass should be so it’s hard to know where to look. But it doesn’t take top slot in my book because it “only” confirmed what we had expected and we’re still on the look-out for “new physics” beyond the Standard Model.

2. Dark energy – 2011 prize

Cooper-fig1
Cosmic discovery The universe has been expanding since the dawn of time, but instead of slowing down, in the last five or six billion years the expansion has sped up, bagging the 2011 Nobel prize for Saul Perlmutter, Adam Riess and Brian Schmidt. (Courtesy: NASA/WMAP Science Team)

Taking second place in our list is the discovery that the expansion of the universe is not slowing down – but accelerating – thanks to studies of exploding stars called supernovae. As with so many Nobel prizes these days, the 2011 award went to three people: Brian Schmidt, who led the High-Z Supernovae Search Team, and his colleague Adam Riess, and to Saul Perlmutter who led the rival Supernova Cosmology Project.

Theirs was a pretty sensational finding that implied that about three-quarters of the mass–energy content of the universe must consist of some weird, gravitationally repulsive substance, dubbed “dark energy”, about which even now we still know virtually nothing. It had previously been assumed that the universe would – depending on how much matter it contains – either collapse eventually in a big crunch or go on expanding forever, albeit at an ever more gentle pace.

The teams had been studying type 1a supernovae, which always blow up in the same way when they reach the same mass, which means that they can be used as “standard candles” to accurately measure distance in the universe. Such supernovae are very rare and the two groups had to carry out painstaking surveys using ground-based telescopes and the Hubble Space Telescope to find enough of them.

The teams thought they’d find that the expansion of the universe is decelerating, but as more and more data piled up, the results only appeared to make sense if the universe has a force pushing matter apart. The Royal Swedish Academy of Sciences said the discovery was “as significant” as the 2006 prize, which had gone to John Mather and the late George Smoot for their discovery in 1992 of the minute temperature variations in the cosmic microwave background – the fossil remnants of the large-scale structures in today’s universe.

But to me, the accelerating expansion has the edge as the implications are even more profound, pointing as they do to the composition and fate of the cosmos.

1. Gravitational waves – 2017 prize

Artist's impression of gravitational waves from a black-hole binary
Space–time collision Artist’s impression of a black-hole binary system generating gravitational waves, the discovery of which led to the 2017 Nobel Prize for Physics for Barry Barish, Kip Thorne and Rainer Weiss, which is (so far) the top physics prize of the 21st century. (Courtesy: LIGO/T Pyle)

And finally, the winner of the greatest Nobel Prize for Physics of the 21st century is the 2017 award, which went to Barry Barish, Kip Thorne and the late Rainer Weiss for the discovery of gravitational waves. Not only is it the most recent prize on my list, it’s also memorable for being a genuine first – discovering the “ripples in space–time” originally predicted by Einstein. The two LIGO detectors in Livingston, Louisiana, and Hanford, Washington, are also astonishing feats of engineering, capable of detecting changes in distance tinier than the radius of the proton.

The story of how gravitational waves were first observed is now well known. It was in the early hours of the morning Monday 14 September 2015, just after staff who had been calibrating the LIGO detector in Livingston had gone to bed, when gravitational waves created from the collision of two black holes 1.3 billion light-years away hit the LIGO detectors in the US. The historic measurement dubbed GW150914 hit the headlines around the world.

More than 200 gravitational-wave events have so far been detected – and observing these ripples, which had long been on many physicists’ bucket lists, has over the last decade become almost routine. Most gravitational-wave detections have been binary black-hole mergers, though there have also been a few neutron-star/black-hole collisions and some binary neutron-star mergers too. Gravitational-wave astronomy is now a well-established field not just thanks to LIGO but also Virgo in Italy and KAGRA in Japan. There are also plans for an even more advanced Einstein Telescope, which could detect in a day what it took LIGO a decade to spot.

Gravitational waves also opened the whole new field of “multimessenger astronomy” – the idea that you observe a cosmic event with gravitational waves and then do follow-up studies using other instruments, measuring it with cosmic rays, neutrinos and photons. Each of these cosmic messengers is produced by distinct processes and so carries information about different mechanisms within its source.

The messengers also differ widely in how they carry this information to the astronomer: for example, gravitational waves and neutrinos can pass through matter and intergalactic magnetic fields, providing an unobstructed view of the universe at all wavelengths. Combining observations of different messengers will therefore let us see more and look further.

  • Think we’re right or spectacularly wrong with our pick of the top five Nobel physics prizes of the 21st century? Get in touch by e-mailing us with your thoughts.

The post The top five physics Nobel prizes of the 21st century revealed appeared first on Physics World.

Training for the stars: Rosemary Coogan on becoming an astronaut

23 septembre 2025 à 15:00

In this episode of the Physics World Stories podcast, Rosemary Coogan offers a glimpse into life as one of the European Space Agency’s newest astronauts. Selected as part of ESA’s 2022 cohort, she received astronaut certification in 2024, and is now in line to visit the International Space Station within the next five years. One day, she may even walk on the Moon as part of the Artemis programme.

Coogan explains what astronaut training really entails: classroom sessions packed with technical knowledge, zero-gravity parabolic flights, and underwater practice in Houston’s neutral buoyancy pool. Born in Northern Ireland, Coogan reflects on her personal journey. From a child dreaming of space, she went on to study physics and astrophysics at Durham University, then completed a PhD on the evolution of distant galaxies.

When not preparing for lift off, Coogan counts sci-fi among her interests – she loves getting lost in the world of possibilities. She’s also candid about the psychological side of astronaut training, and how she’s learned to savour the learning process itself rather than obsess over launch dates. Hosted by Andrew Glester, this episode captures both the challenge and wonder of preparing for an imminent journey to space.

The post Training for the stars: Rosemary Coogan on becoming an astronaut appeared first on Physics World.

💾

Rainer Weiss: US gravitational-wave pioneer dies aged 92

27 août 2025 à 18:05

Rainer Weiss, who shared the Nobel Prize for Physics in 2017 for the discovery of gravitational waves, died on 25 August at the age of 92. Weiss came up with the idea of detecting gravitational waves by measuring changes in distance as tiny as 10–18 m via an interferometer several kilometres long. His proposal eventually led to the formation of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO), which first detected such waves in 2015.

Weiss was born in Berlin, Germany, on 29 September 1932 shortly before the Nazis rose to power. With a father who was Jewish and an ardent communist, Weiss and his family were forced to flee the country – first to Czechoslovakia and then to the US in 1939.  Weiss was raised in New York, finishing his school days at the private Columbia Grammar School thanks to a scholarship from a refugee relief organization.

In 1950 Weiss began studying electrical engineering at Massachusetts Institute of Technology (MIT) before switching to physics, eventually earning a PhD in 1962, developing atomic clocks under the supervision of Jerrold Zacharias,. He then worked at Tufts University before moving to Princeton University, where he was a research associate with the astronomer and physicist Robert Dicke.

In 1964 Weiss returned to MIT, where he began developing his idea of using a large interferometer to measure gravitational waves. Teaming up with Kip Thorne at the California Institute of Technology (Caltech), Weiss drew up a feasibility study for a kilometre-scale laser interferometer. In 1979 the National Science Foundation funded Caltech and MIT to develop the proposal to build LIGO.

Construction of two LIGO detectors – one in Hanford, Washington and the other at Livingston, Louisiana, each of which featured arms 4 km long – began in 1990, with the facilities opening in 2002. After almost a decade of operation, however, no waves had been detected so in 2011 the two observatories were upgraded to make them 10 times more sensitive than before.

On 14 September 2015 – during the first observation run of what was known as Advanced LIGO, or aLIGO – the interferometer detected gravitational waves from two merging black holes some  1.3 billion light-years from Earth. The discovery was announced by those working on aLIGO in February 2016.

The following year, Weiss was awarded one half of the 2017 Nobel Prize for Physics “for decisive contributions to the LIGO detector and the observation of gravitational waves”. The other half was shared by Thorne and fellow Caltech physicist Barry Barish, who was LIGO project director.

‘An indelible mark’

As well as pioneering the detection of gravitational waves, Weiss also developed atomic clocks and led efforts to measure the spectrum of the cosmic microwave background via weather balloons. He co-founded NASA’s Cosmic Background Explorer project, measurements from which have helped support the Big Bang theory describing the expansion of the universe.

In addition to the Nobel prize, Weiss was awarded the Gruber Prize in Cosmology in 2006, the Einstein Prize from the American Physical Society in 2007 as well as the Shaw Prize and the Kavli Prize in Astrophysics, both in 2016.

MIT’s dean of science Nergis Mavalvala, who worked with Weiss to build an early prototype of a gravitational-wave detector as part of her PhD in the 1990s, says that every gravitational-wave event that is observed “will be a reminder of his legacy”.

“[Weiss] leaves an indelible mark on science and a gaping hole in our lives,” says Mavalvala. “I am heartbroken, but also so grateful for having him in my life, and for the incredible gifts he has given us – of passion for science and discovery, but most of all to always put people first.”

The post Rainer Weiss: US gravitational-wave pioneer dies aged 92 appeared first on Physics World.

❌