When the Titanic was built, her owners famously described her as “unsinkable”. A few days into her maiden voyage, an iceberg in the North Atlantic famously proved them wrong. But what if we could make ships that really are unsinkable? And what if we could predict exactly how long a hazardous iceberg will last before it melts?
These are the premises of two separate papers published independently this week by Chunlei Guo and colleagues at the University of Rochester, and by Daisuke Noto and Hugo N Ulloa of the University of Pennsylvania, both in the US. The Rochester group’s paper, which appears in Advanced Functional Materials, describes how applying a superhydrophobic coating to an open-ended metallic tube can make it literally unsinkable – a claim supported by extensive tests in a water tank. Noto and Ulloa’s research, which they describe in Science Advances, likewise involved a water tank. Theirs, however, was equipped with cameras, lasers and thermochromic liquid crystals that enabled them to track a freely floating miniature iceberg as it melted.
Imagine a spherical iceberg
Each study is surprising in its own way. For the iceberg paper, arguably the biggest surprise is that no-one had ever done such experiments before. After all, water and ice are readily available. Fancy tanks, lasers, cameras and temperature-sensitive crystals are less so, yet surely someone, somewhere, must have stuck some ice in a tank and monitored what happened to it?
Noto and Ulloa’s answer is, in effect, no. “Despite the relevance of melting of floating ice in calm and energetic environments…most experimental and numerical efforts to examine this process, even to date, have either fixed or tightly constrained the position and posture of ice,” they write. “Consequently, the relationships between ice dissolution rate and background fluid flow conditions inferred from these studies are meaningful only when a one-way interaction, from the liquid to the solid phase, dominates the melting dynamics.”
The problem, they continue, is that eliminating these approximations “introduces a significant technical challenge for both laboratory experiments and numerical simulations” thanks to a slew of interactions that would otherwise get swept under the rug. These interactions, in turn, lead to complex dynamics such as drifting, spinning and even flipping that must be incorporated into the model. Consequently, they write, “fundamental questions persist: ‘How long does an ice body last?’”
- Tracking a melting iceberg: This side view of the experiment shows fluid motions as moving particles and temperature distributions as colours of the thermochromic liquid crystal particles. Meltplume (dark colour) formed beneath the floating ice plunges down, penetrating through the thermally stratified layer (red: cold, blue: warm). Note: this video has no sound. (Courtesy: Noto and Ulloa, Science Advances 12 5 DOI: 10.1126/sciadv.ady352)
To answer this question, Noto and Ulloa used their water-tank observations (see video) to develop a model that incorporates the thermodynamics of ice melting and mass balance conservation. Based on this model, they correctly predict both the melting rate and the lifespan of freely floating ice under self-driven convective flows that arise from interactions between the ice and the calm, fresh water surrounding it. Though the behaviour of ice in tempestuous salty seas is, they write, “beyond our scope”, their model nevertheless provides a useful upper bound on iceberg longevity, with applications for climate modelling as well as (presumably) shipping forecasts for otherwise-doomed ocean liners.
The tube that would not sink
In the unsinkable tube study, the big surprise is that a metal tube, divided in the middle but open at both ends, can continue to float after being submerged, corroded with salt, tossed about on a turbulent sea and peppered with holes. How is that even possible?
“The inside of the tube is superhydrophobic, so water can’t enter and wet the walls,” Guo explains. “As a result, air remains trapped inside, providing buoyancy.”
Importantly, this buoyancy persists even if the tube is damaged. “When the tube is punctured, you can think of it as becoming two, three, or more smaller sections,” Guo tells Physics World. “Each section will work in the same way of preventing water from entering inside, so no matter how many holes you punch into it, the tube will remain afloat.”
So, is there anything that could make these superhydrophobic structures sink? “I can’t think of any realistic real-world challenges more severe than what we have put them through experimentally,” he says.
We aren’t in unsinkable ship territory yet: the largest structure in the Rochester study was a decidedly un-Titanic-like raft a few centimetres across. But Guo doesn’t discount the possibility. He points out that tubes are made from ordinary aluminium, with a simple fabrication process. “If suitable applications call for it, I believe [human-scale versions] could become a reality within a decade,” he concludes.
The post Saving the <em>Titanic</em>: the science of icebergs and unsinkable ships appeared first on Physics World.