↩ Accueil

Vue normale

Reçu aujourd’hui — 21 octobre 2025 6.5 📰 Sciences English

Illuminating quantum worlds: a Diwali conversation with Rupamanjari Ghosh

21 octobre 2025 à 18:25

Homes and cities around the world are this week celebrating Diwali or Deepavali – the Indian “festival of lights”. For Indian physicist Rupamanjari Ghosh, who is the former vice chancellor of Shiv Nadar University Delhi-NCR, this festival sheds light on the quantum world. Known for her work on nonlinear optics and entangled photons, Ghosh finds a deep resonance between the symbolism of Diwali and the ongoing revolution in quantum science.

“Diwali comes from Deepavali, meaning a ‘row of lights’. It marks the triumph of light over dark; good over evil; and knowledge over ignorance,” Ghosh explains. “In science too, every discovery is a Diwali –  a victory of knowledge over ignorance.”

With 2025 being marked by the International Year of Quantum Science and Technology, a victory of knowledge over ignorance couldn’t ring truer. “It has taken us a hundred years since the birth of quantum mechanics to arrive at this point, where quantum technologies are poised to transform our lives,” says Ghosh.

Ghosh has another reason to celebrate, having been named as this year’s Institute of Physics (IOP) Homi Bhabha lecturer. The IOP and the Indian Physical Association (IPA) jointly host the Homi Bhabha and Cockcroft Walton bilateral exchange of lecturers. Running since 1998, these international programmes aim to promote dialogue on global challenges through physics and provide physicists with invaluable opportunities for global exposure and professional growth. Ghosh’s online lecture, entitled “Illuminating quantum frontiers: from photons to emerging technologies”, will be aired at 3 p.m. GMT on Wednesday 22 October.

From quantum twins to quantum networks

Ghosh’s career in physics took off in the mid-1980s, when she and American physicist Leonard Mandel – who is often referred to as one of the founding fathers of quantum optics – demonstrated a new quantum source of twin photons through spontaneous parametric down-conversion: a process where a high-energy photon splits into two lower-energy, correlated photons (Phys. Rev. A 34 3962).

“Before that,” she recalls, “no-one was looking for quantum effects in this nonlinear optical process. The correlations between the photons defied classical explanation. It was an elegant early verification of quantum nonlocality.”

Those entangled photon pairs are now the building blocks of quantum communication and computation. “We’re living through another Diwali of light,” she says, “where theoretical understanding and experimental innovation illuminate each other.”

Entangled light

During Diwali, lamps unite households in a shimmering network of connection,  and so too does entanglement of photons. “Quantum entanglement reminds us that connection transcends locality,” Ghosh says. “In the same way, the lights of Diwali connect us across borders and cultures through shared histories.”

Her own research extends that metaphor further. Ghosh’s team has worked on mapping quantum states of light onto collective atomic excitations. These “slow-light” techniques –  using electromagnetically induced transparency or Raman interactions –  allow photons to be stored and retrieved, forming the backbone of long-distance quantum communication (Opt. Lett. 36 1551).

“Symbolically,” she adds, “it’s like passing the flame from one diya (lamp) to another. We’re not just spreading light –  we’re preserving, encoding and transmitting it. Success comes through connection and collaboration.”

Rupamanjari Ghosh
Beyond the shadows: Ghosh calls for the bright light of inclusivity in science. (Courtesy: Rupamanjari Ghosh)

The dark side of light

Ghosh is quick to note that in quantum physics, “darkness” is far from empty. “In quantum optics, even the vacuum is rich –  with fluctuations that are essential to our understanding of the universe.”

Her group studies the transition from quantum to classical systems, using techniques such as error correction, shielding and coherence-preserving materials. “Decoherence –  the loss of quantum behaviour through environmental interaction –  is a constant threat. To build reliable quantum technologies, we must engineer around this fragility,” Ghosh explains.

There are also human-engineered shadows: some weaknesses in quantum communication devices aren’t due to the science itself – they come from mistakes or flaws in how humans built them. Hackers can exploit these “side channels” to get around security. “Security,” she warns, “is only as strong as the weakest engineering link.”

Beyond the lab, Ghosh finds poetic meaning in these challenges. “Decoherence isn’t just a technical problem –  it helps us understand the arrows of time, why the universe evolves irreversibly. The dark side has its own lessons.”

Lighting every corner

For Ghosh, Diwali’s illumination is also a call for inclusivity in science. “No corner should remain dark,” she says. “Science thrives on diversity. Diverse teams ask broader questions and imagine richer answers. It’s not just morally right – it’s good for science.”

She argues that equity is not sameness but recognition of uniqueness. “Innovation doesn’t come from conformity. Gender diversity, for example, brings varied cognitive and collaborative styles – essential in a field like quantum science, where intuition is constantly stretched.”

The shadows she worries most about are not in the lab, but in academia itself. “Unconscious biases in mentorship or gatekeeping in opportunity can accumulate to limit visibility. Institutions must name and dismantle these hidden shadows through structural and cultural change.”

Her vision of inclusion extends beyond gender. “We shouldn’t think of work and life as opposing realms to ‘balance’,” she says. “It’s about creating harmony among all dimensions of life – work, family, learning, rejuvenation. That’s where true brilliance comes from.”

As the rows of diyas are lit this Diwali, Ghosh’s reflections remind us that light –  whether classical or quantum –  is both a physical and moral force: it connects, illuminates and endures. “Each advance in quantum science,” she concludes, “is another step in the age-old journey from darkness to light.”

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the year for more coverage of the IYQ.

Find out more on our quantum channel.

The post Illuminating quantum worlds: a Diwali conversation with Rupamanjari Ghosh appeared first on Physics World.

Analysts question Germany’s request for defensive and inspector satellites

21 octobre 2025 à 17:20
Illustration of the German Earth observation satellite TerraSAR-X and its orbit around Earth. Credit: DLR (CC BY-NC-ND 3.0)

LONDON — The German Aerospace Center (DLR) is looking to purchase satellites capable of jamming other spacecraft and inspecting objects in space, and it wants to do so on tight deadlines.  But experts are skeptical whether Germany could achieve the ambitious goals including launches on a yet unflown domestic launcher after years of underinvestment into […]

The post Analysts question Germany’s request for defensive and inspector satellites appeared first on SpaceNews.

Influential theoretical physicist and Nobel laureate Chen-Ning Yang dies aged 103

21 octobre 2025 à 15:31

The Chinese particle physicist Chen-Ning Yang died on 18 October at the age of 103. Yang shared half of the 1957 Nobel Prize for Physics with Tsung-Dao Lee for their theoretical work that overturned the notion that parity is conserved in the weak force – one of the four fundamental forces of nature.

Born on 22 September 1922 in Hefei, China, Yang competed a BSc at the National Southwest Associated University in Kunming in 1942. After finishing an MSc in statistical physics at Tsinghua University two years later, in 1945 he moved to the University of Chicago in the US as part of a government-sponsored programme. He received his PhD in physics in 1948 working under the guidance of Edward Teller.

In 1949 Yang moved to the Institute for Advanced Study in Princeton, where he made pioneering contributions to quantum field theory, wotrking together with Robert Mills. In 1953 they proposed the Yang-Mills theory, which became a cornerstone of the Standard Model of particle physics.

The ‘Wu experiment’

It was also at Princeton where Yang began a fruitful collaboration with Lee, who died last year aged 97. Their work on parity – a property of elementary particles that expresses their behaviour upon reflection in a mirror – led to the duo winning the Nobel prize.

In the early 1950s, physicists had been puzzled by the decays of two subatomic particles, known as tau and theta, which are identical except that the tau decays into three pions with a net parity of -1, while a theta particle decays into two pions with a net parity of +1.

There were two possible explanations: either the tau and theta are different particles or that parity in the weak interaction is not conserved with Yang and Lee proposing various ways to test their ideas (Phys. Rev. 104 254).

This “parity violation” was later proved experimentally by, among others, Chien-Shiung Wu at Columbia University. She carried out an experiment based on the radioactive decay of unstable cobalt-60 nuclei into nickel-60 – what became known as the “Wu experiment”. For their work, Yang, who was 35 at the time, shared the 1957 Nobel Prize for Physics with Lee.

Influential physicist

In 1965 Yang moved to Stony Brook University, becoming the first director of the newly founded Institute for Theoretical Physics, which is now known as the C N Yang Institute for Theoretical Physics. During this time he also contributed to advancing science and education in China, setting up the Committee on Educational Exchange with China – a programme that has sponsored some 100 Chinese scholars to study in the US.

In 1997, Yang returned to Beijing where he became an honorary director of the Centre for Advanced Study at Tsinghua University. He then retired from Stony Brook in 1999, becoming a professor at Tsinghua University. During his time in the US, Yang obtained US citizenship, but renounced it in 2015.

More recently, Yang was involved in debates over whether China should build the Circular Electron Positron Collider (CEPC) – a huge 100 km circumference underground collider that would study the Higgs boson in unprecented detail and be a successor to CERN’s Large Hadron Collider. Yang took a sceptical view calling it “inappropriate” for a developing country that is still struggling with “more acute issues like economic development and environment protection”.

Yang also expressed concern that the science performed on the CEPC is just “guess” work and without guaranteed results. “I am not against the future of high-energy physics, but the timing is really bad for China to build such a super collider,” he noted in 2016. “Even if they see something with the machine, it’s not going to benefit the life of Chinese people any sooner.”

Lasting legacy

As well as the Nobel prize, Yang won many other awards such as the US National Medal of Science in 1986, the Einstein Medal in 1995, which is presented by the Albert Einstein Society in Bern, and the American Physical Society’s Lars Onsager Prize in 1990.

“The world has lost one of the most influential physicists of the modern era,” noted Stony Brook president Andrea Goldsmith in a statement. “His legacy will continue through his transformational impact on the field of physics and through the many colleagues and students influenced by his teaching, scholarship and mentorship.”

The post Influential theoretical physicist and Nobel laureate Chen-Ning Yang dies aged 103 appeared first on Physics World.

Taiwan should build a space-enabled kill web, not big warships

21 octobre 2025 à 15:00
Earth observation taken during a night pass over Taiwan by an Expedition 36 crew member on board the International Space Station. Credit: NASA / Karen Nyberg

As part of a broader modernization effort, United States defense assistance should focus on freeing Taiwan’s senior military leadership from outdated paradigms by embedding multi-domain operations, joint training and campaign-level wargaming. The Pentagon’s most valuable contribution is doctrinal and architectural: helping Taiwan build a kill web — a distributed sensor-to-shooter network spanning space, air, sea […]

The post Taiwan should build a space-enabled kill web, not big warships appeared first on SpaceNews.

Starlink mini lasers to link Muon Space satellites for near real-time connectivity

21 octobre 2025 à 13:00

SpaceX is supplying optical terminals to Muon Space, the four-year-old Californian manufacturer said Oct. 21, enabling its future Halo satellites to use the Starlink broadband constellation as a global data-relay network.

The post Starlink mini lasers to link Muon Space satellites for near real-time connectivity appeared first on SpaceNews.

Precision sensing experiment manipulates Heisenberg’s uncertainty principle

21 octobre 2025 à 10:00

Physicists in Australia and the UK have found a new way to manipulate Heisenberg’s uncertainty principle in experiments on the vibrational mode of a trapped ion. Although still at the laboratory stage, the work, which uses tools developed for error correction in quantum computing, could lead to improvements in ultra-precise sensor technologies like those used in navigation, medicine and even astronomy.

“Heisenberg’s principle says that if two operators – for example, position x and momentum, p – do not commute, then one cannot simultaneously measure both of them to absolute precision,” explains team leader Ting Rei Tan of the University of Sydney’s Nano Institute. “Our result shows that one can instead construct new operators – namely ‘modular position’ x̂ and ‘modular momentum’ p̂. These operators can be made to commute, meaning that we can circumvent the usual limitation imposed by the uncertainty principle.”

The modular measurements, he says, give the true measurement of displacements in position and momentum of the particle if the distance is less than a specific length l, known as the modular length. In the new work, they measured x̂ = x mod lx and p̂ = p mod lp, where lx and lp are the modular length in position and momentum.

“Since the two modular operators x̂ and p̂ commute, this means that they are now bounded by an uncertainty principle where the product is larger or equal to 0 (instead of the usual ℏ/2),” adds team member Christophe Valahu. “This is how we can use them to sense position and momentum below the standard quantum limit. The catch, however, is that this scheme only works if the signal being measured is within the sensing range defined by the modular lengths.”

The researchers stress that Heisenberg’s uncertainty principle is in no way “broken” by this approach, but it does mean that when observables associated with these new operators are measured, the precision of these measurements is not limited by this principle. “What we did was to simply push the uncertainty to a sensing range that is relatively unimportant for our measurement to obtain a better precision at finer details,” Valahu tells Physics World.

This concept, Tan explains, is related to an older method known as quantum squeezing that also works by shifting uncertainties around. The difference is that in squeezing, one reshapes the probability, reducing the spread in position at the cost of enlarging the spread of momentum, or vice versa. “In our scheme, we instead redistribute the probability, reducing the uncertainties of position and momentum within a defined sensing range, at the cost of an increased uncertainty if the signal is not guaranteed to lie within this range,” Tan explains. “We effectively push the unavoidable quantum uncertainty to places we don’t care about (that is, big, coarse jumps in position and momentum) so the fine details we do care about can be measured more precisely.

“Thus, as long as we know the signal is small (which is almost always the case for precision measurements), modular measurements give us the correct answer.”

Repurposed ideas and techniques

The particle being measured in Tan and colleagues’ experiment was a 171Yb+ ion trapped in a so-called grid state, which is a subclass of error-correctable logical state for quantum bits, or qubits. The researchers then used a quantum phase estimation protocol to measure the signal they imprinted onto this state, which acts as a sensor.

This measurement scheme is similar to one that is commonly used to measure small errors in the logical qubit state of a quantum computer. “The difference is that in this case, the ‘error’ corresponds to a signal that we want to estimate, which displaces the ion in position and momentum,” says Tan. “This idea was first proposed in a theoretical study.”

Towards ultra-precise quantum sensors

The Sydney researchers hope their result will motivate the development of next-generation precision quantum sensors. Being able to detect extremely small changes is important for many applications of quantum sensing, including navigating environments where GPS isn’t effective (such as on submarines, underground or in space). It could also be useful for biological and medical imaging, materials analysis and gravitational systems.

Their immediate goal, however, is to further improve the sensitivity of their sensor, which is currently about 14 x10-24 N/Hz1/2, and calculate its limit. “It would be interesting if we could push that to the 10-27 N level (which, admittedly, will not be easy) since this level of sensitivity could be relevant in areas like the search for dark matter,” Tan says.

Another direction for future research, he adds, is to extend the scheme to other pairs of observables. “Indeed, we have already taken some steps towards this: in the latter part of our present study, which is published in Science Advances, we constructed a modular number operator and a modular phase operator to demonstrate that the strategy can be extended beyond position and momentum.”

The post Precision sensing experiment manipulates Heisenberg’s uncertainty principle appeared first on Physics World.

Belgian startup Nxgsat raises early funds for virtual 5G satellite modem

21 octobre 2025 à 08:00

A Belgian startup led by satellite networking veterans announced $1.4 million in seed funding Oct. 21 to develop a virtual 5G modem, designed for multi-orbit compatibility across traditionally closed communications infrastructure.

The post Belgian startup Nxgsat raises early funds for virtual 5G satellite modem appeared first on SpaceNews.

Reçu hier — 20 octobre 2025 6.5 📰 Sciences English
❌