Moderna CEO Responds to RFK Jr.’s Crusade Against the Covid-19 Vaccine
The FCC has dropped investigations into EchoStar as the satellite operator moves to sell spectrum to SpaceX and AT&T in deals totalling more than $40 billion.
The post FCC closes EchoStar probes as spectrum sales reshape D2D race appeared first on SpaceNews.
The chief executive of Airbus says he is still “very committed” to combining his company’s space business with those of two other European firms.
The post Airbus CEO ‘very committed’ to combination of European space businesses appeared first on SpaceNews.
Memorial spaceflights have grown from novelty to a modest and steady business, one that’s carried thousands of loved ones to orbit over the past three decades. Now, a startup founded by a former Blue Origin engineer aims to harness the space industry’s latest advances to take the market mainstream. Ryan Mitchell, founder of Florida-based Space […]
The post The business case for resting among the stars appeared first on SpaceNews.
Incoming NGSO services shift sector norms, driving 63% of commercial aviation IFC by 2034
The post NGSO set to disrupt In-Flight Connectivity Landscape appeared first on SpaceNews.
Colorado Springs, CO (September 09, 2025) – Frontgrade Technologies, a leading provider of high-reliability electronic solutions for space and national security missions, today introduced its SIMOPS Dual-Channel Power Amplifier. This […]
The post Frontgrade Launches SIMOPS Dual-Channel Power Amplifier for Defense Communications and Electronic Warfare Applications appeared first on SpaceNews.
COLORADO SPRINGS, CO (September 9, 2025) Frontgrade Technologies, a leading provider of high-reliability electronic solutions for space and national security missions, today announced the release of the PSM28 VPX Power […]
The post Frontgrade Launches Space-Optimized PSM28 Power Supply Module for High-Reliability SpaceVPX Systems appeared first on SpaceNews.
A new transition-metal oxide crystal that reversibly and repeatedly absorbs and releases oxygen could be ideal for use in fuel cells and as the active medium in clean energy technologies such as thermal transistors, smart windows and new types of batteries. The “breathing” crystal, discovered by scientists at Pusan National University in Korea and Hokkaido University in Japan, is made from strontium, cobalt and iron and contains oxygen vacancies.
Transition-metal oxides boast a huge range of electrical properties that can be tuned all the way from insulating to superconducting. This means they can find applications in areas as diverse as energy storage, catalysis and electronic devices.
Among the different material parameters that can be tuned are the oxygen vacancies. Indeed, ordering these vacancies can produce new structural phases that show much promise for oxygen-driven programmable devices.
In the new work, a team of researchers led by physicist Hyoungjeen Jeen of Pusan and materials scientist Hiromichi Ohta in Hokkaido studied SrFe0.5Co0.5Ox. The researchers focused on this material, they say, since it belongs to the family of topotactic oxides, which are the main oxides being studied today in solid-state ionics. “However, previous work had not discussed which ion in this compound was catalytically active,” explains Jeen. “What is more, the cobalt-containing topotactic oxides studied so far were fragile and easily fractured during chemical reactions.”
The team succeeded in creating a unique platform from a solid solution of epitaxial SrFe0.5Co0.5O2.5 in which both the cobalt and iron ions bathed in the same chemical environment. “In this way, we were able to test which ion was better for reduction reactions and whether or not it sustained its structural integrity,” Jeen tells Physics World. “We found that our material showed element-specific reduction behaviours and reversible redox reactions.”
The researchers made their material using a pulsed laser deposition technique, ideal for the epitaxial synthesis of multi-element oxides that allowed them to grow SrFe0.5Co0.5O2.5 crystals in which the iron and cobalt ions were randomly located in the crystal. This random arrangement was key to the material’s ability to repeatedly release and absorb oxygen, they say.
“It’s like giving the crystal ‘lungs’ so that it can inhale and exhale oxygen on command,” says Jeen.
This simple breathing picture comes from the difference in the catalytic activity of cobalt and iron in the compound, he explains. Cobalt ions prefer to lose and gain oxygen and these ions are the main sites for the redox activity. However, since iron ions prefer not to lose oxygen during the reduction reaction, they serve as pillars in this architecture. This allows for stable and repeatable oxygen release and uptake.
Until now, most materials that absorb and release oxygen in such a controlled fashion were either too fragile or only functioned at extremely high temperatures. The new material works under more ambient conditions and is stable. “This finding is striking in two ways: only cobalt ions are reduced, and the process leads to the formation of an entirely new and stable crystal structure,” explains Jeen.
The researchers also showed that the material could return to its original form when oxygen was reintroduced, so proving that the process is fully reversible. “This is a major step towards the realization of smart materials that can adjust themselves in real time,” says Ohta. “The potential applications include developing a cathode for intermediate solid oxide fuel cells, an active medium for thermal transistors (devices that can direct heat like electrical switches), smart windows that adjust their heat flow depending on the weather and even new types of batteries.”
Looking ahead, Jeen, Ohta and colleagues aim to investigate the material’s potential for practical applications.
They report their present work in Nature Communications.
The post ‘Breathing’ crystal reversibly releases oxygen appeared first on Physics World.
At the end of August, the U.K. government took the decision to fold the UK Space Agency (UKSA) into the Department for Science, Innovation and Technology (DSIT). UKSA was created in 2010, reflecting the understanding that the space sector was becoming increasingly important to the economy. During its tenure, the British astronaut Tim Peake was […]
The post Abolishing the UK’s independent space agency could be a mistake appeared first on SpaceNews.
If the Army is training soldiers to become better space professionals, that is not duplication. It is survival.
The post In space, the old debates about turf are obsolete appeared first on SpaceNews.
China carried out two launches Monday, sending a new reconnaissance satellite into an unexpected orbit and adding 11 spacecraft to automaker Geely’s commercial constellation.
The post China launches mystery Yaogan-45 spysat, expands Geesatcom constellation appeared first on SpaceNews.
Optical fibres form the backbone of the Internet, carrying light signals across the globe. But some light is always lost as it travels, becoming attenuated by about 0.14 decibels per kilometre even in the best fibres. That means signals must be amplified every few dozen kilometres – a performance that hasn’t improved in nearly four decades.
Physicists at the University of Southampton, UK have now developed an alternative that could call time on that decades-long lull. Writing in Nature Photonics, they report hollow-core fibres that exhibit 35% less attenuation while transmitting signals 45% faster than standard glass fibres.
The core of conventional fibres is made of pure glass and is surrounded by a cladding of slightly different glass. Because the core has a higher refractive index than the cladding, light entering the fibre reflects internally, bouncing back and forth in a process known as total internal reflection. This effect traps the light and guides it along the fibre’s length.
The Southampton team led by Francesco Poletti swapped the standard glass core for air. Because air is more transparent than glass, channelling light through it cuts down on scattering and speeds up signals. The problem is that air’s refractive index is lower, so the new fibre can’t use total internal reflection. Instead, Poletti and colleagues guided the light using a mechanism called anti-resonance, which requires the walls of the hollow core to be made from ultra-thin glass membranes.
“It’s a bit like a soap bubble,” Poletti says, explaining that such bubbles appear iridescent because their thin films reflect some wavelengths and lets others through. “We designed our fibre the same way, with glass membranes that reflect light at certain frequencies back into the core.” That anti-resonant reflection, he adds, keeps the light trapped and moving through the fibre’s hollow centre.
To make the new air-core fibre, the researchers stacked thin glass capillaries in a precise pattern, forming a hollow channel in the middle. Heating and drawing the stack into a hair-thin filament preserved this pattern on a microscopic scale. The finished fibre has a nested design: an air core surrounded by ultra-thin layers that provide anti-resonant guidance and cut down on leakage.
To test their design, the team measured transmission through a full spool of fibre, then cut the fibre shorter and compared the results. They also fired in light pulses and tracked the echoes. Their results show that the hollow fibres reduce attenuation to just 0.091 decibels per kilometre. This lower loss implies that fewer amplifiers would be needed in long cables, lowering costs and energy use. “There’s big potential for greener telecommunications when using our fibres,” says Poletti.
Poletti adds that reduced attenuation (and thus lower energy use) is only one of the new fibre’s advantages. At the 0.14 dB/km attenuation benchmark, the new hollow fibre supports a bandwidth of 54 THz compared to 10 THz for a normal fibre. At the reduced 0.1 dB/km attenuation, the bandwidth is still 18 THz, which is close to twice that of a normal cable. This means that a single strand can carry far more channels at once.
Perhaps the most impressive advantage is that because the speed of light is faster in air than in glass, data could travel the same distance up to 45% faster. “It’s almost the same speed light takes when we look at a distant star,” Poletti says. The resulting drop in latency, he adds, could be crucial for real-time services like online gaming or remote surgery, and could also speed up computing tasks such as training large language models.
As well as the team’s laboratory tests, Microsoft has begun testing the fibres in real systems, installing segments in its network and sending live traffic through them. These trials prove the hollow-core design works with existing telecom equipment, opening the door to gradual rollout. In the longer run, adapting amplifiers and other gear that are currently tuned for solid glass fibres could unlock even better performance.
Poletti believes the team’s new fibres could one day replace existing undersea cables. “I’ve been working on this technology for more than 20 years,” he says, adding that over that time, scepticism has given way to momentum, especially now with Microsoft as an industry partner. But scaling up remains a real hurdle. Making short, flawless samples is one thing; mass-producing thousands of kilometres at low cost is another. The Southampton team is now refining the design and pushing toward large-scale manufacturing. They’re hopeful that improvements could slash losses by another order of magnitude and that the anti-resonant design can be tuned to different frequency bands, including those suited to new, more efficient amplifiers.
Other experts agree the advance marks a turning point. “The work builds on decades of effort to understand and perfect hollow-core fibres,” says John Ballato, whose group at Clemson University in the US develops fibres with specialty cores for high-energy laser and biomedical applications. While Ballato notes that such fibres have been used commercially in shorter-distance communications “for some years now”, he believes this work will open them up to long-haul networks.
The post New hollow-core fibres break a 40-year limit on light transmission appeared first on Physics World.
The Commerce Department has moved to rescind 40% of the current-year funding for the Office of Space Commerce.
The post Office of Space Commerce loses 40% of budget in rescission appeared first on SpaceNews.
SWISSto12 has contracted DelSontro Enterprises to support the optimization of the first integration and test process for their HummingSat program. SWISSto12’s novel approach to small sat GEOs is reimagining the […]
The post DelSontro Enterprises Contracted by SWISSto12 for Test Process Optimization of its HummingSat Small Sat GEO Program appeared first on SpaceNews.
Chinese scientists are proposing using a pathfinder spacecraft to make a flyby of asteroid Apophis when it makes a close approach to Earth in 2029.
The post China proposes flyby mission to asteroid Apophis during 2029 Earth encounter appeared first on SpaceNews.
The concept of cause and effect plays an important role in both our everyday lives, and in physics. If you set a ball down in front of a window and kick it hard, a split-second later the ball will hit the window and smash it. What we don’t observe is a world where the window smashes on its own, thereby causing the ball to be kicked – that would seem rather nonsensical. In other words, kick before smash, and smash before kick, are two different physical processes each having a unique and definite causal order.
But, does definite causal order also reign supreme the quantum world, where concepts like position and time can be fuzzy? Most physicists are happy to accept the paradox of Schrödinger’s cat – a thought experiment in which a cat hidden in a box is simultaneously dead and alive at the same time, until you open the box to check. Schrödinger’s cat illustrates the quantum concept of “superposition”, whereby a system can be in two or more states at the same time. It is only when a measurement is made (by opening the box), does the system collapse into one of its possible states.
But could two (or more) causally distinct processes occur at the same time in the quantum world? The answer, perhaps shockingly, is yes and this paradoxical phenomenon is called indefinite causal order (ICO).
It turns out that different causal processes can also exist in a superposition. One example is a thought experiment called the “gravitational quantum switch”, which was proposed in 2019 by Magdalena Zych of the University of Queensland and colleagues (Nat. Comms 10 3772). This features our favourite quantum observers Alice and Bob, who are in the vicinity of a very large mass, such as a star. Alice and Bob both have initially synchronized clocks and in the quantum world, these clocks would continue to run at identical rates. However, Einstein’s general theory of relativity dictates that the flow of time is influenced by the distribution of matter in the vicinity of Alice and Bob. This means that if Alice is closer to the star than Bob, then her clock will run slower than Bob’s, and vice versa.
Like with Schrödinger’s cat, quantum mechanics allows the star to be in a superposition of spatial states; meaning that in one state Alice is closer to the star than Bob, and in the other Bob is closer to the star than Alice. In other words, this is a superposition of a state in which Alice’s clock runs slower than Bob’s, and a state in which Bob’s clock runs slower than Alice’s.
Alice and Bob are both told they will receive a message at a specific time (say noon) and that they would then pass that message on to the their counterpart. If Alice’s clock is running faster than Bob’s then she will receive the message first, and then pass it on to Bob, and vice versa. This superposition of Alice to Bob with Bob to Alice is an example of indefinite causal order.
Now, you might be thinking “so what” because this seems to be a trivial example. But it becomes more interesting if you replace the message with a quantum particle like a photon; and have Alice and Bob perform different operations on that photon. If the two operations do not commute – such as rotations of the photon polarization in the X and Z planes – then the order in which the operations are done will affect the outcome.
As a result, this “gravitational quantum switch” is a superposition of two different causal processes with two different outcomes. This means that Alice and Bob could do more exotic operations on the photon, such as “measure-and-reprepare” operations (where a quantum system is first measured, and then, based on the measurement outcome, a new quantum state is prepared). In this case Alice measures the quantum state of the received photon and prepares a photon that she sends to Bob (or vice versa).
Much like Schrödinger’s cat, a gravitational quantum switch cannot currently be realized in the lab. But, never say never. Physicists have been able to create experimental analogues of some thought experiments, so who knows what the future will bring. Indeed, a gravitational quantum switch could provide important information regarding a quantum description of gravity – something that has eluded physicists ever since quantum mechanics and general relativity were being developed in the early 20th century.
Moving on to more practical ICO experiments, physicists have already built and tested light-based quantum switches in the lab. Instead of having the position of the star determining whether Alice or Bob go first, the causal order is determined by a two-level quantum state – which can have a value of 0 or 1. If this control state is 0, then Alice goes first and if the control state is 1, then Bob goes first. Crucially, when the control state is in a superposition of 0 and 1 the system shows indefinite causal order (see figure 1).
In this illustration of a quantum switch a photon (driving a car) can follow two different paths, each with a different causal order. One path (top) leads to Alice’s garage followed by a visit to Bob’s drive thru. The second path (middle) visits Bob first, and then Alice. The path taken by the photon is determined by a control qubit that is represented by a traffic light. If the value of the qubit is “0” then the photon visits Alice First; if the qubit is “1” then the photon visits Bob first. Both of these scenarios have definite causal order.
However, the control qubit can exist in a quantum superposition of “0” and “1” (bottom). In this superposition, the path followed by the photon – and therefore the temporal order in which it visits Alice and Bob – is not defined. This is an example of indefinite causal order. Of course, any attempt to identify exactly which path the photon goes through initially will destroy the superposition (and therefore the ICO) and the photon will take only one definite path.
The first such quantum switch was created by in 2015 by Lorenzo Procopio (now at Germany’s University of Paderborn) and colleagues at the Vienna Center for Quantum Science and Technology (Nat. Comms 6, 7913). Their quantum switch involves firing a photon at a beam splitter, which puts the photon into a superposition of a photon that has travelled straight through the splitter (state 0) and a photon that has been deflected by 90 degrees (state 1). This spatial superposition is the control state of the quantum switch, playing the role of the star in the gravitational quantum switch.
State 0 photons first travel to an Alice apparatus where a polarization rotation is done in a specific direction (say X). Then the photons are sent to a Bob apparatus where a non-commuting rotation (say Z) is done. Conversely, the photons that travel along the state 1 path encounter Bob before Alice.
Finally, the state 0 and state 1 paths are recombined at a second beamsplitter, which is monitored by two photon-detectors. Because Alice-then-Bob has a different effect on a photon than does Bob-then-Alice, interference can occur between recombined photons. This interference is studied by systematically changing certain aspects of the experiment. For example, by changing Alice’s direction of rotation or the polarization of the incoming photons.
In 2017 quantum-information researcher Giulia Rubino, then at the Vienna Center for Quantum Science and Technology, teamed up with Procopia and colleagues to verify ICO in their quantum switch using a “causal witness” (Sci. Adv. 3 e1602589). This involves doing a specific set of experiments on the quantum switch and calculating a mathematical entity (the causal witness) that reveals whether a system has definite or indefinite causal order. Sure enough, this test revealed that their system does indeed have ICO. Since then, physicists working in several independent labs have successfully created their own quantum switches.
While this effect might still seem somewhat obscure, in 2019, an international team led by the renowned Chinese physicist Jian-Wei Pan showed that a quantum switch can be very useful for doing computations that are distributed between two parties (Phys. Rev. Lett. 122 120504). In such a scenario a string of data is received and then processed by Alice, who then passes the results on to Bob for further processing. In an experiment using photons, they showed that ICO delivers an exponential speed-up of the rate at which longer strings are processed – compared to a system with no ICO.
Physicists are also exploring if ICO could be used to enhance quantum metrology. Indeed, recent calculations by Oxford University’s Giulio Chiribella and colleagues suggest that it could lead to a significant increase in precision when compared to techniques that involve states with definite causal order (Phys. Rev. Lett. 124 190503).
While other applications could be possible, it is often difficult work out whether ICO offers the best solution to a specific problem. For example, physicists had thought a quantum switch offered an advantage when it comes to communicating along a noisy channel, but it turns out that some configurations of Alice and Bob with definite causal order were just as good as an ICO.
Beyond the quantum switch, there are other types of circuits that would display ICO. These include “quantum circuits with quantum control of causal order”, which have yet to be implemented in the lab because of their complexity.
But despite the challenges in creating ICO systems and proving that they outperform other solutions, it looks like ICO is set to join ranks of other weird phenomena such as superposition and entanglement that have found practical applications in quantum technologies.
This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.
Stayed tuned to Physics World and our international partners throughout the year for more coverage of the IYQ.
Find out more on our quantum channel.
The post Indefinite causal order: how quantum physics is challenging our understanding of cause and effect appeared first on Physics World.
When the global space community looks ahead to September, all eyes turn to Paris. From September 15–19, 2025, the French capital will become the decision-making hub of the space domain, […]
The post Global Space Leaders Converge in Paris for Novaspace Summits appeared first on SpaceNews.
SAN FRANCISCO – BlackSky and Iceye have joined forces with AI-visualization specialists Aechelon Technology and Niantic Spatial to create a digital twin of Earth. The joint campaign to create a planetary-scale geospatial model that can be frequently refreshed with satellite observations is called Project Orbion. BlackSky high-resolution visual imagery and Iceye synthetic aperture radar […]
The post BlackSky and Iceye join group creating Earth’s digital twin appeared first on SpaceNews.