↩ Accueil

Vue normale

Reçu aujourd’hui — 13 août 20256.5 📰 Sciences English

Cambrian Works Selects Astroscale U.S. as its Mission Partner for NASA Swift Observatory Boost Mission Concept Study

13 août 2025 à 17:44
Cambrian Works and Astroscale logos

Commercial mission concept could give the Neil Gehrels Swift Observatory a new lease on life, preserving its search for the universe’s most powerful explosions

The post Cambrian Works Selects Astroscale U.S. as its Mission Partner for NASA Swift Observatory Boost Mission Concept Study appeared first on SpaceNews.

Flying ‘standby’ proves popular for SpaceX rideshares

13 août 2025 à 17:33
F9 T-11 launch

Five years into its program to provide smallsat rideshare launch services, SpaceX is emphasizing flexibility to accommodate growing demand. SpaceX’s rideshare program has now launched more than 1,400 satellites across more than 30 missions, said Ronnie Foreman, the company’s senior sales manager for rideshare. Foreman spoke during an Aug. 12 side session at SmallSat 2025. […]

The post Flying ‘standby’ proves popular for SpaceX rideshares appeared first on SpaceNews.

For military space, what tasks should be automated?

13 août 2025 à 16:30

SALT LAKE CITY – It’s easy to talk about satellite autonomy but significant work remains to determine exactly which tasks should be handled by machines, according to speakers at the 2025 Small Satellite Conference. Military aircraft have extensive built-in autonomy thanks to decades of experience identifying useful features in combat exercises. U.S. Space Force satellite […]

The post For military space, what tasks should be automated? appeared first on SpaceNews.

Richard Muller: ‘Physics stays the same. What changes is how the president listens’

13 août 2025 à 16:00

Richard Muller, a physicist at the University of California, Berkeley, was in his office when someone called Liz showed up who’d once taken one of his classes. She said her family had invited a physicist over for dinner, who touted controlled nuclear fusion as a future energy source. When Liz suggested solar power was a better option, the guest grew patronizing. “If you wanted to power California,” he told her, “you’d have to plaster the entire state with solar cells.”

Fortunately, Liz remembered what she’d learned on Muller’s course, entitled “Physics for Future Presidents”, and explained why the dinner guest was wrong. “There’s a kilowatt in a square metre of sunlight,” she told him, “which means a gigawatt in a square kilometre – only about the space of a nuclear power plant.” Stunned, the physicist grew silent. “Your numbers don’t sound wrong,” he finally said. “Of course, today’s solar cells are only 15% efficient. But I’ll take a look again.”

It’s a wonderful story that Muller told me when I visited him a few months ago to ask about his 2008 book Physics for Future Presidents: the Science Behind the Headlines. Based on the course that Liz took, the book tries to explain physics concepts underpinning key issues including energy and climate change. “She hadn’t just memorized facts,” Muller said. “She knew enough to shut up an expert who hadn’t done his homework. That’s what presidents should be able to do.” A president, Muller believes, should know enough science to have a sense for the value of expert advice.

Dissenting minds

Muller’s book was published shortly before Barack Obama’s two terms as US president. Obama was highly pro-science, appointing the Nobel-prize-winning physicist Steven Chu as his science adviser. With Donald Trump in the White House, I had come to ask Muller what advice – if any – he would change in the book. But it wasn’t easy for me to keep Muller on topic, as he derails easily with anecdotes of fascinating situations and extraordinary people that he’s encountered in his remarkable life.

Richard Muller
Talking physics Richard Muller explaining antimatter to students at the University of California, Berkeley, in 2005. (Courtesy: WikiCommons)

Born in New York City, Muller, 81, attended Bronx High School of Science and Columbia University, joining the University of California, Berkeley as a graduate student in the autumn of 1964. A few weeks after entering, he joined the Free Speech Movement to protest against the university’s ban on campus political activities. During a sit-in, Muller was arrested and dragged down the steps of Sproul Hall, Berkeley’s administration building.

As a graduate student, Muller worked with Berkeley physicist Luis Alvarez – who would later win the 1968 Nobel Prize for Physics – to send a balloon with a payload of cosmic-ray detectors over the Pacific. Known as the High Altitude Particle Physics Experiment (HAPPE), the apparatus crashed in the ocean. Or so Muller thought.

As Muller explained in a 2023 article in the Wall Street Journal, US intelligence recovered a Chinese surveillance device, shot down over Georgia by the US military, with a name that translated as “HAPI”. Muller found enough other similarities to conclude that the Chinese had recovered the device and copied it as a model for their balloons. But by then Muller had switched to studying negative kaon particles using bubble chambers. After his PhD, he stayed at Berkeley as a postdoc, eventually becoming a professor in 1980.

Muller is a prominent contrarian, publishing an article advancing the controversial – though some now argue that it’s plausible – view that the COVID-19 virus originated in a Chinese lab. For a long time he was a global-warming sceptic, but in 2012, after three years of careful analysis, he publicly changed his mind via an article in the New York Times. Former US President Bill Clinton cited Muller as “one of my heroes because he changed his mind on global warming”. Muller loved that remark, but told me: “I’m not a hero. I’m just a scientist.”

Muller was once shadowed by a sociology student for a week for a course project. “She was like [the anthropologist] Diane Fosse and I was a gorilla,” Muller recalls. She was astonished. “I thought physicists spent all their time thinking and experimenting,” the student told him. “You spend most of your time talking.” Muller wasn’t surprised. “You don’t want to spend your time rediscovering something somebody already knows,” he said. “So physicists talk a lot.”

Recommended recommendations

I tried again to steer Muller back to the book. He said it was based on a physics course at Berkeley known originally as “Qualitative physics” and informally as physics for poets or dummies. One of the first people to teach it had been the theorist and “father of the fusion bomb” Edward Teller. “Teller was exceedingly popular,” Muller told me, “possibly because he gave everyone in class an A and no exams.”

After Teller, fewer and fewer students attended the course until enrolment dropped to 20. So when Muller took over in 1999 he retitled it “Physics for future presidents”, he refocused it on contemporary issues, and rebuilt the enrolment until it typically filled a large auditorium with about 500 students. He retired in 2010 after a decade of teaching the course.

Making a final effort, I handed Muller a copy of his book, turned to the last page where he listed a dozen or so specific recommendations for future presidents, and asked him to say whether he had changed his mind in the intervening 17 years.

Fund strong programmes in energy efficiency and conservation? “Yup!”

Raise the miles-per-gallon of autos substantially? “Yup.”

Support efforts at sequestering carbon dioxide? “I’m not much in favour anymore because the developing world can’t afford it.”

Encourage the development of nuclear power? “Yeah. Particularly fission; fusion’s too far in the future. Also, I’d tell the president to make clear that nuclear waste storage is a solved problem, and make sure that Yucca mountain is quickly approved.”

See that China and India are given substantial carbon credits for building coal-fired power stations and nuclear plants? “Nuclear power plants yes, carbon credits no. Over a million and a half people in China die from coal pollution each year.”

Encourage solar and wind technologies? “Yes.” Cancel subsidies on corn ethanol? “Yes”. Encourage developments in efficient lighting? “Yes.” Insulation is better than heating? “Yes.” Cool roofs save more energy than air conditioners and often better than solar cells? “Yes.”

The critical point

Muller’s final piece of advice to the future president was that the “emphasis must be on technologies that the developing world can afford”. He was adamant. “If what you are doing is buying expensive electric automobiles that will never sell in the developing world, it’s just virtue signalling in luxury.”

I kept trying to find some new physics Muller would tell the president, but it wasn’t much. “Physics mostly stays the same,” Muller concluded, “so the advice mainly does, too.” But not everything remains unvarying. “What changes the most”, he conceded, “is how the president listens”. Or even whether the president is listening at all.

The post Richard Muller: ‘Physics stays the same. What changes is how the president listens’ appeared first on Physics World.

Strengthening ties in orbit: the expanding U.S.-UAE space partnership

The United Arab Emirates photographed by an Expedition 38 crew member on the International Space Station. Credit: NASA

The United States and the United Arab Emirates (UAE), though differing in size and history, have forged a vibrant partnership in space. In just over a decade, this bond has accelerated the UAE’s rise as a spacefaring nation while opening new avenues for U.S. industry and diplomacy.  With the UAE’s capital and speed, and the […]

The post Strengthening ties in orbit: the expanding U.S.-UAE space partnership appeared first on SpaceNews.

Burnt space insurers are getting back the game

13 août 2025 à 14:00
Illustration of the SARah-Passiv Earth observation satellite pair on either side of the SARah-Active satellite. Credit: OHB

Insurers are returning to the space industry after retreating in the wake of harrowing losses just a few years ago. At least three firms have announced capacity for space risks in recent months: Phemis and Hive, both revived from former space underwriting teams, and Whitecap,a solo effort led by an underwriter from a now-defunct insurance […]

The post Burnt space insurers are getting back the game appeared first on SpaceNews.

Rogue expands staff ahead of planned double launch

13 août 2025 à 14:00

SALT LAKE CITY – Rogue Space Systems is reorganizing to prepare for growth in its space logistics business and a double launch in 2027. Brook Leonard, a retired U.S. Space Force major general, is the new CEO. Former CEO Jon Beam will serve as Rogue president and chief strategy officer. David Franklin, a retired Space […]

The post Rogue expands staff ahead of planned double launch appeared first on SpaceNews.

NASA launches TRACERS mission to study Earth’s ‘magnetic shield’

13 août 2025 à 13:02

NASA has successfully launched a mission to explore the interactions between the Sun’s and Earth’s magnetic fields. The Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) craft was sent into low-Earth orbit on 23 July from Vandenberg Space Force Base in California by a SpaceX Falcon 9 rocket. Following a month of calibration, the twin-satellite mission is expected to operate for a year.

The spacecraft will observe particles and electromagnetic fields in the Earth’s northern magnetic “cusp region”, which encircles the North Pole where the Earth’s magnetic field lines curve down toward Earth.

This unique vantage point allows researchers to study how magnetic reconnection — when field lines connect and explosively reconfigure — affects the space environment. Such observations will help researchers understand how processes change over both space and time.

The two satellites will collect data from over 3000 cusp crossings during the one-year mission with the information being used to understand space-weather phenomena that can disrupt satellite operations, communications and power grids on Earth.

Each nearly identical octagonal satellite – weighing less than 200 kg each – features six instruments including magnetomers, electric-field instruments and devices to measure the energy of ions and electrons in plasma around the spacecraft.

It will operate in a Sun-synchronous orbit about 590 km above ground with the satellites following one behind the other in close separation, passing through regions of space at least 10 seconds apart.

“TRACERS is an exciting mission,” says Stephen Fuselier from the Southwest Research Institute in Texas, who is the mission’s deputy principal investigator. “The data from that single pass through the cusp were amazing. We can’t wait to get the data from thousands of cusp passes.”

The post NASA launches TRACERS mission to study Earth’s ‘magnetic shield’ appeared first on Physics World.

Jet stream study set to improve future climate predictions

13 août 2025 à 11:35
Factors influencing the jet stream in the southern hemisphere
Driven by global warming The researchers identified which factors influence the jet stream in the southern hemisphere. (Courtesy: Leipzig University/Office for University Communications)

An international team of meteorologists has found that half of the recently observed shifts in the southern hemisphere’s jet stream are directly attributable to global warming – and pioneered a novel statistical method to pave the way for better climate predictions in the future.

Prompted by recent changes in the behaviour of the southern hemisphere’s summertime eddy-driven jet (EDJ) – a band of strong westerly winds located at a latitude of between 30°S and 60°S – the Leipzig University-led team sifted through historical measurement data to show that wind speeds in the EDJ have increased, while the wind belt has moved consistently toward the South Pole. They then used a range of innovative methods to demonstrate that 50% of these shifts are directly attributable to global warming, with the remainder triggered by other climate-related changes, including warming of the tropical Pacific and the upper tropical atmosphere, and the strengthening of winds in the stratosphere.

“We found that human fingerprints on the EDJ are already showing,” says lead author Julia Mindlin, research fellow at Leipzig University’s Institute for Meteorology. “Global warming, springtime changes in stratospheric winds linked to ozone depletion, and tropical ocean warming are all influencing the jet’s strength and position.”

“Interestingly, the response isn’t uniform, it varies depending on where you look, and climate models are underestimating how strong the jet is becoming. That opens up new questions about what’s missing in our models and where we need to dig deeper,” she adds.

Storyline approach

Rather than collecting new data, the researchers used existing, high-quality observational and reanalysis datasets – including the long-running HadCRUT5 surface temperature data, produced by the UK Met Office and the University of East Anglia, and a variety of sea surface temperature (SST) products including HadISST, ERSSTv5 and COBE.

“We also relied on something called reanalysis data, which is a very robust ‘best guess’ of what the atmosphere was doing at any given time. It is produced by blending real observations with physics-based models to reconstruct a detailed picture of the atmosphere, going back decades,” says Mindlin.

To interpret the data, the team – which also included researchers at the University of Reading, the University of Buenos Aires and the Jülich Supercomputing Centre – used a statistical approach called causal inference to help isolate the effects of specific climate drivers. They also employed “storyline” techniques to explore multiple plausible futures rather than simply averaging qualitatively different climate responses.

“These tools offer a way to incorporate physical understanding while accounting for uncertainty, making the analysis both rigorous and policy-relevant,” says Mindlin.

Future blueprint

For Mindlin, these findings are important for several reasons. First, they demonstrate “that the changes predicted by theory and climate models in response to human activity are already observable”. Second, she notes that they “help us better understand the physical mechanisms that drive climate change, especially the role of atmospheric circulation”.

“Third, our methodology provides a blueprint for future studies, both in the southern hemisphere and in other regions where eddy-driven jets play a role in shaping climate and weather patterns,” she says. “By identifying where and why models diverge from observations, our work also contributes to improving future projections and enhances our ability to design more targeted model experiments or theoretical frameworks.”

The team is now focused on improving understanding of how extreme weather events, like droughts, heatwaves and floods, are likely to change in a warming world. Since these events are closely linked to atmospheric circulation, Mindlin stresses that it is critical to understand how circulation itself is evolving under different climate drivers.

One of the team’s current areas of focus is drought in South America. Mindlin notes that this is especially challenging due to the short and sparse observational record in the region, and the fact that drought is a complex phenomenon that operates across multiple timescales.

“Studying climate change is inherently difficult – we have only one Earth, and future outcomes depend heavily on human choices,” she says. “That’s why we employ ‘storylines’ as a methodology, allowing us to explore multiple physically plausible futures in a way that respects uncertainty while supporting actionable insight.”

The results are reported in the Proceedings of the National Academy of Sciences.

The post Jet stream study set to improve future climate predictions appeared first on Physics World.

Festival opens up the quantum realm

13 août 2025 à 10:07
quantum hackathon day 1 NQCC
Collaborative insights: The UK Quantum Hackathon, organized by the NQCC for the fourth consecutive year and a cornerstone of the Quantum Fringe festival, allowed industry experts to work alongside early-career researchers to explore practical use cases for quantum computing. (Courtesy: NQCC)

The International Year of Quantum Science and Technology (IYQ) has already triggered an explosion of activities around the world to mark 100 years since the emergence of quantum mechanics. In the UK, the UNESCO-backed celebrations have provided the perfect impetus for the University of Edinburgh’s Quantum Software Lab (QSL) to work with the National Quantum Computing Centre (NQCC) to organize and host a festival of events that have enabled diverse communities to explore the transformative power of quantum computing.

Known collectively as the Quantum Fringe, in a clear nod to Edinburgh’s famous cultural festival, some 16 separate events have been held across Scotland throughout June and July. Designed to make quantum technologies more accessible and more relevant to the outside world, the programme combined education and outreach with scientific meetings and knowledge exchange.

The Quantum Fringe programme evolved from several regular fixtures in the quantum calendar. One of these cornerstones was the NQCC’s flagship event, the UK Quantum Hackathon, which is now in its fourth consecutive year. In common with previous editions, the 2025 event challenged teams of hackers to devise quantum solutions to real-world use cases set by mentors from different industry sectors. The teams were supported throughout the three-day event by the industry mentors, as well as by technical experts from providers of various quantum resources.

quantum hackathon - NQCC
Time constrained: the teams of hackers were given two days to formulate their solution and test it on simulators, annealers and physical processors. (Courtesy: NQCC)

This year, perhaps buoyed by the success of previous editions, there was a significant uptick in the number of use cases submitted by end-user organizations. “We had twice as many applications as we could accommodate, and over half of the use cases we selected came from newcomers to the event,” said Abby Casey, Quantum Readiness Delivery Lead at the NQCC. “That level of interest suggests that there is a real appetite among the end-user community for understanding how quantum computing could be used in their organizations.”

Reflecting the broader agenda of the IYQ, this year the NQCC particularly encouraged use cases that offered some form of societal benefit, and many of the 15 that were selected aimed to align with the UN’s Sustainable Development Goals. One team investigated the accuracy of quantum-powered neural networks for predicting the progression of a tumour, while another sought to optimize the performance of graphene-based catalysts for fuel cells. Moonbility, a start-up firm developing digital twins to optimize the usage of transport and infrastructure, challenged its team to develop a navigation system capable of mapping out routes for people with specific mobility requirements, such as step-free access or calmer environments for those with anxiety disorders.

During the event the hackers were given just two days to explore the use case, formulate a solution, and generate results using quantum simulators, annealers and physical processors. The last day provided an opportunity for the teams to share their findings with their peers and a five-strong judging panel that was chaired by Sir Peter Knight, one of the architects of the UK’s National Quantum Technologies Programme and co-chair of the IYQ’s Steering Committee a prime mover in the IYQ celebrations. “Your effort, energy and passion have been quite extraordinary,” commented Sir Peter at the end of the event. “It’s truly impressive to see what you have achieved in just two days.”

From the presentations it was clear that some of the teams had adapted their solution to reflect the physical constraints of the hardware platform they had been allocated. Those explorations were facilitated by the increased participation of mentors from hardware developers, including QuEra and Pasqal for cold-atom architectures, and Rigetti and IBM for gate-based superconducting processors. “Cold atoms offer greater connectivity than superconducting platforms, which may make them more suited to solving particular types of problems,” said Gerard Milburn of the University of Sussex, who has recently become a Quantum Fellow at the NQCC.

quantum hackathon day 3 NQCC
Results day: The final day of the hackathon allowed the teams to share their results with the other participants and a five-strong judging panel. (Courtesy: NQCC)

The winning team, which had been challenged by Aioi R&D Lab to develop a quantum-powered solution for scheduling road maintenance, won particular praise for framing the problem in a way that recognized the needs of all road users, not just motorists. “It was really interesting that they thought about the societal value right at the start, and then used those ethical considerations to inform the way they approached the problem,” said Knight.

The wider impact of the hackathon is clear to see, with the event providing a short, intense and collaborative learning experience for early-career researchers, technology providers, and both small start-up companies and large multinationals. This year, however, the hackathon also provided the finale to the Quantum Fringe, which was the brainchild of Elham Kashefi and her team at the QSL. Taking inspiration from the better-known Edinburgh Fringe, the idea was to create a diverse programme of events to engage and inspire different audiences with the latest ideas in quantum computing.

“We wanted to celebrate the International Year of Quantum in a unique way,” said Mina Doosti, one of the QSL’s lead researchers. “We had lots of very different events, many of which we hadn’t foreseen at the start. It was very refreshing, and we had a lot of fun.”

One of Doosti’s favourite events was a two-day summer school designed for senior high-school students. As well as introducing the students to the concepts of quantum computing, the QSL researchers challenged them to write some code that could be run on IBM’s free-to-access quantum computer. “The organizers and lecturers from the QSL worked hard to develop material that would make sense to the students, and the attendees really grabbed the opportunity to come and learn,” Doosti explained. “From the questions they were asking and the way they tackled the games and challenges, we could see that they were interested and that they had learnt something.”

From the outset the QSL team were also keen for the Quantum Fringe to become a focal point for quantum-inspired activities that were being planned by other organizations. Starting from a baseline of four pillar events that had been organized by the NQCC and the QSL in previous years, the programme eventually swelled to 16 separate gatherings with different aims and outcomes. That included a public lecture organized by the new QCi3 Hub – a research consortium focused on interconnected quantum technologies – which attracted around 200 people who wanted to know more about the evolution of quantum science and its likely impact across technology, industry, and society. An open discussion forum hosted by Quantinuum, one of the main sponsors of the festival, also brought together academic researchers, industry experts and members of the public to identify strategies for ensuring that quantum computing benefits everyone in society, not just a privileged few.

Quantum researchers also had plenty of technical events to choose from. The regular AIMday Quantum Computing, now in its third year, enabled academics to work alongside industry experts to explore a number of business-led challenges. More focused scientific meetings allowed researchers to share their latest results in quantum cryptography and cybersecurity, algorithms and complexity, and error correction in neutral atoms. For her part, Doosti co-led the third edition of Foundations in Quantum Computing, a workshop that combines invited talks with dedicated time for focused discussion. “The speakers are briefed to cover the evolution of a particular field and to highlight open challenges, and then we use the discussion sessions to brainstorm ideas around a specific question,” she explained.

Those scientific meetings were complemented by a workshop on responsible quantum innovation, again hosted by the QCi3 Hub, and a week-long summer school on the Isle of Skye that was run by Heriot-Watt University and the London School of Mathematics. “All of our partners ran their events in the way they wanted, but we helped them with local support and some marketing and promotion,” said Ramin Jafarzadegan, the QSL’s operations manager and the chair of the Quantum Fringe festival. “Bringing all of these activities together delivered real value because visitors to Edinburgh could take part in multiple events.”

Indeed, one clear benefit of this approach was that some of the visiting scientists stayed for longer, which also enabled them to work alongside the QSL team. That has inspired a new scheme, called QSL Visiting Scholars, that aims to encourage scientists from other institutions to spend a month or so in Edinburgh to pursue collaborative projects.

As a whole, the Quantum Fringe has helped both the NQCC and the QSL in their ambitions to bring diverse stakeholders together to create new connections and to grow the ecosystem for quantum computing in the UK. “The NQCC should have patented the ‘quantum hackathon’ name,” joked Sir Peter. “Similar events are popping up everywhere these days, but the NQCC’s was among the first.”

The post Festival opens up the quantum realm appeared first on Physics World.

Understanding strongly correlated topological insulators

13 août 2025 à 09:03

Topological insulators have generated a lot of interest in recent years because of their potential applications in quantum computing, spintronics and information processing.

The defining property of these materials is that their interior behaves as an electrical insulator while their surface behaves as an electrical conductor. In other words, electrons can only move along the material’s surface.

In some cases however, known as strongly correlated systems, the strong interactions between electrons cause this relatively simple picture to break down.

Understanding and modelling strongly correlated topological insulators, it turns out, is extremely challenging.

A team of researchers from the Kavli Institute for Theoretical Sciences, China, have recently tackled this challenge by using a new approach employing fermionic tensor states.

Their framework notably reduces the number of parameters needed in numerical simulations. This should lead to a greatly improved computational efficiency when modelling these systems.

By combining their methods with advanced numerical techniques, the researchers expect to be able to overcome the challenges posed by strong interaction effects.

This will lead to a deeper understanding of the properties of strongly correlated systems and could also enable the discovery of new materials with exciting new properties.

The post Understanding strongly correlated topological insulators appeared first on Physics World.

Mission Control offers in-orbit testbed for AI models

13 août 2025 à 02:00

SALT LAKE CITY – Mission Control Space Services is inviting organizations to test machine-learning models on the Canadian startup’s Persistence mission launched in June. “Whether you’re from a for-profit company, nonprofit or even a school, we think that the need for autonomy to meet the requirements of an increasingly complex space environment is here to […]

The post Mission Control offers in-orbit testbed for AI models appeared first on SpaceNews.

❌