Majorana bound states spotted in system of three quantum dots
Firm evidence of Majorana bound states in quantum dots has been reported by researchers in the Netherlands. Majorana modes appeared at both edges of a quantum dot chain when an energy gap suppressed them in the centre, and the experiment could allow researchers to investigate the unique properties of these particles in hitherto unprecedented detail. This could bring topologically protected quantum bits (qubits) for quantum computing one step closer.
Majorana fermions were first proposed in 1937 by the Italian physicist Ettore Majorana. They were imagined as elementary particles that would be their own antiparticles. However, such elementary particles have never been definitively observed. Instead, physicists have worked to create Majorana quasiparticles (particle-like collective excitations) in condensed matter systems.
In 2001, the theoretical physicist Alexei Kitaev at Microsoft Research, proposed that “Majorana bound states” could be produced in nanowires comprising topological superconductors. The Majorana quasiparticle would exist as a single nonlocal mode at either end of a wire, while being zero-valued in the centre. Both ends would be constrained by the laws of physics to remain identical despite being spatially separated. This phenomenon could produce “topological qubits” robust to local disturbance.
Microsoft and others continue to research Majorana modes using this platform to this day. Multiple groups claim to have observed them, but this remains controversial. “It’s still a matter of debate in these extended 1D systems: have people seen them? Have they not seen them?”, says Srijit Goswami of QuTech in Delft.
Controlling disorder
In 2012, theoretical physicists Jay Sau, then of Harvard University and Sankar Das Sarma of the University of Maryland proposed looking for Majorana bound states in quantum dots. “We looked at [the nanowires] and thought ‘OK, this is going to be a while given the amount of disorder that system has – what are the ways this disorder could be controlled?’ and this is exactly one of the ways we thought it could work,” explains Sau. The research was not taken seriously at the time, however, Sau says, partly because people underestimated the problem of disorder.
Goswami and others have previously observed “poor man’s Majoranas” (PMMs) in two quantum dots. While they share some properties with Majorana modes, PMMs lack topological protection. Last year the group coupled two spin-polarized quantum dots connected by a semiconductor–superconductor hybrid material. At specific points, the researchers found zero-bias conductance peaks.
“Kitaev says that if you tune things exactly right you have one Majorana on one dot and another Majorana on another dot,” says Sau. “But if you’re slightly off then they’re talking to each other. So it’s an uncomfortable notion that they’re spatially separated if you just have two dots next to each other.”
Recently, a group that included Goswami’s colleagues at QuTech found that the introduction of a third quantum dot stabilized the Majorana modes. However, they were unable to measure the energy levels in the quantum dots.
Zero energy
In new work, Goswami’s team used systems of three electrostatically-gated, spin-polarized quantum dots in a 2D electron gas joined by hybrid semiconductor–superconductor regions. The quantum dots had to be tuned to zero energy. The dots exchanged charge in two ways: by standard electron hopping through the semiconductor and by Cooper-pair mediated coupling through the superconductor.
“You have to change the energy level of the superconductor–semiconductor hybrid region so that these two processes have equal probability,” explains Goswami. “Once you satisfy these conditions, then you get Majoranas at the ends.”
In addition to more topological protection, the addition of a third qubit provided the team with crucial physical insight. “Topology is actually a property of a bulk system,” he explains; “Something special happens in the bulk which gives rise to things happening at the edges. Majoranas are something that emerge on the edges because of something happening in the bulk.” With three quantum dots, there is a well-defined bulk and edge that can be probed separately: “We see that when you have what is called a gap in the bulk your Majoranas are protected, but if you don’t have that gap your Majoranas are not protected,” Goswami says.
To produce a qubit will require more work to achieve the controllable coupling of four Majorana bound states and the integration of a readout circuit to detect this coupling. In the near-term, the researchers are investigating other phenomena, such as the potential to swap Majorana bound states.
Sau is now at the University of Maryland and says that an important benefit of the experimental platform is that it can be determined unambiguously whether or not Majorana bound states have been observed. “You can literally put a theory simulation next to the experiment and they look very similar.”
The research is published in Nature.
The post Majorana bound states spotted in system of three quantum dots appeared first on Physics World.