↩ Accueil

Vue normale

index.feed.received.today — 22 mai 20256.5 📰 Sciences English
index.feed.received.yesterday — 21 mai 20256.5 📰 Sciences English

Bacteria-killing paint could dramatically improve hospital hygiene

21 mai 2025 à 17:20
Antimicrobial efficacy of chlorhexidine epoxy resin
Antimicrobial efficacy SEM images of steel surfaces inoculated with bacteria show a large bacterial concentration on surfaces painted with control epoxy resin (left) and little to no bacteria on those painted with chlorhexidine epoxy resin. (Courtesy: University of Nottingham)

Scientists have created a novel antimicrobial coating that, when mixed with paint, can be applied to a range of surfaces to destroy bacteria and viruses – including particularly persistent and difficult to kill strains like MRSA, flu virus and SARS-CoV-2. The development potentially paves the way for substantial improvements in scientific, commercial and clinical hygiene.

The University of Nottingham-led team made the material by combining chlorhexidine digluconate (CHX) – a disinfectant commonly used by dentists to treat mouth infections and by clinicians for cleaning before surgery – with everyday paint-on epoxy resin. Using this material, the team worked with staff at Birmingham-based specialist coating company Indestructible Paint to create a prototype antimicrobial paint. They found that, when dried, the coating can kill a wide range of pathogens.

The findings of the study, which was funded by the Royal Academy of Engineering Industrial Fellowship Scheme, were published in Scientific Reports.

Persistent antimicrobial protection

As part of the project, the researchers painted the antimicrobial coating onto a surface and used a range of scientific techniques to analyse the distribution of the biocide in the paint, to confirm that it remained uniformly distributed at a molecular level.

According to project leader Felicity de Cogan, the new paint can be used to provide antimicrobial protection on a wide array of plastic and hard non-porous surfaces. Crucially, it could be effective in a range of clinical environments, where surfaces like hospital beds and toilet seats can act as a breeding ground for bacteria for extended periods of time – even after the introduction of stringent cleaning regimes.

The team, based at the University’s School of Pharmacy, is also investigating the material’s use in the transport and aerospace industries, especially on frequently touched surfaces in public spaces such as aeroplane seats and tray tables.

“The antimicrobial in the paint is chlorhexidine – a biocide commonly used in products like mouthwash. Once it is added, the paint works in exactly the same way as all other paint and the addition of the antimicrobial doesn’t affect its application or durability on the surface,” says de Cogan.

Madeline Berrow from the University of Nottingham
In the lab Co-first author Madeline Berrow, who performed the laboratory work for the study. (Courtesy: University of Nottingham)

The researchers also note that adding CHX to the epoxy resin did not affect its optical transparency.

According to de Cogan, the novel concoction has a range of potential scientific, clinical and commercial applications.

“We have shown that it is highly effective against a range of different pathogens like E. coli and MRSA. We have also shown that it is effective against bacteria even when they are already resistant to antibiotics and biocides,” she says. “This means the technology could be a useful tool to circumvent the global problem of antimicrobial resistance.”

In de Cogan’s view, there are also number of major advantages to using the new coating to tackle bacterial infection – especially when compared to existing approaches – further boosting the prospects of future applications.

The key advantage of the technology is that the paint is “self-cleaning” – meaning that it would no longer be necessary to carry out the arduous task of repeatedly cleaning a surface to remove harmful microbes. Instead, after a single application, the simple presence of the paint on the surface would actively and continuously kill bacteria and viruses whenever they come into contact with it.

“This means that you can be sure a surface won’t pass on infections when you touch it,” says de Cogan.

“We are looking at more extensive testing in harsher environments and long-term durability testing over months and years. This work is ongoing and we will be following up with another publication shortly,” she adds.

The post Bacteria-killing paint could dramatically improve hospital hygiene appeared first on Physics World.

Balancing progress and partnership: evaluating the Space Force’s new personnel laws

21 mai 2025 à 15:00

The United States Space Force, America’s newest military branch, executes its mission with roughly 9,400 military personnel and an additional 5,000 civilian employees. This is a fraction of the size […]

The post Balancing progress and partnership: evaluating the Space Force’s new personnel laws appeared first on SpaceNews.

Why I stopped submitting my work to for-profit publishers

21 mai 2025 à 12:00

Peer review is a cornerstone of academic publishing. It is how we ensure that published science is valid. Peer review, by which researchers judge the quality of papers submitted to journals, stops pseudoscience from being peddled as equivalent to rigorous research. At the same time, the peer-review system is under considerable strain as the number of journal articles published each year increases, jumping from 1.9 million in 2016 to 2.8 million in 2022, according to Scopus and Web of Science.

All these articles require experienced peer reviewers, with papers typically taking months to go through peer review. This cannot be blamed alone on the time taken to post manuscripts and reviews back and forth between editors and reviewers, but instead is a result of high workloads and, fundamentally, how busy everyone is. Given peer reviewers need to be expert in their field, the pool of potential reviewers is inherently limited. A bottleneck is emerging as the number of papers grows quicker than the number of researchers in academia.

Scientific publishers have long been central to managing the process of peer review. For anyone outside academia, the concept of peer review may seem illogical given that researchers spend their time on it without much acknowledgement. While initiatives are in place to change this such as outstanding-reviewer awards and the Web of Science recording reviewer data, there is no promise that such recognition will be considered when looking for permanent positions or applying for promotion.

The impact of open access

Why, then, do we agree to review? As an active researcher myself in quantum physics, I peer-reviewed more than 40 papers last year and I’ve always viewed it as a duty. It’s a necessary time-sink to make our academic system function, to ensure that published research is valid and to challenge questionable claims. However, like anything people do out of a sense of duty, inevitably there are those who will seek to exploit it for profit.

Many journals today are open access, in which fees, known as article-processing charges, are levied to make the published work freely available online. It makes sense that costs need to be imposed – staff working at publishing companies need paying; articles need editing and typesetting; servers need be maintained and web-hosting fees have to be paid. Recently, publishers have invested heavily in digital technology and developed new ways to disseminate research to a wider audience.

Open access, however, has encouraged some publishers to boost revenues by simply publishing as many papers as possible. At the same time, there has been an increase in retractions, especially of fabricated or manipulated manuscripts sold by “paper mills”. The rise of retractions isn’t directly linked to the emergence of open access, but it’s not a good sign, especially when the academic publishing industry reports profit margins of roughly 40% – higher than many other industries. Elsevier, for instance, publishes nearly 3000 journals and in 2023 its parent company, Relx, recorded a profit of £1.79bn. This is all money that was either paid in open-access fees or by libraries (or private users) for journal subscriptions but ends up going to shareholders rather than science.

It’s important to add that not all academic publishers are for-profit. Some, like the American Physical Society (APS), IOP Publishing, Optica, AIP Publishing and the American Association for the Advancement of Science – as well as university presses – are wings of academic societies and universities. Any profit they make is reinvested into research, education or the academic community. Indeed, IOP Publishing, AIP Publishing and the APS have formed a new “purpose-led publishing” coalition, in which the three publishers confirm that they will continue to reinvest the funds generated from publishing back into research and “never” have shareholders that result in putting “profit above purpose”.

But many of the largest publishers – the likes of Springer Nature, Elsevier, Taylor and Francis, MDPI and Wiley – are for-profit companies and are making massive sums for their shareholders. Should we just accept that this is how the system is? If not, what can we do about it and what impact can we as individuals have on a multi-billion-dollar industry? I have decided that I will no longer review for, nor submit my articles (when corresponding author) to, any for-profit publishers.

I’m lucky in my field that I have many good alternatives such as the arXiv overlay journal Quantum, IOP Publishing’s Quantum Science and Technology, APS’s Physical Review X Quantum and Optica Quantum. If your field doesn’t, then why not push for them to be created? We may not be able to dismantle the entire for-profit publishing industry, but we can stop contributing to it (especially those who have a permanent job in academia and are not as tied down by the need to publish in high impact factor journals). Such actions may seem small, but together can have an effect and push to make academia the environment we want to be contributing to. It may sound radical to take change into your own hands, but it’s worth a try. You never know, but it could help more money make its way back into science.

The post Why I stopped submitting my work to for-profit publishers appeared first on Physics World.

Visual assistance system helps blind people navigate

21 mai 2025 à 10:00
Structure and workflow of a wearable visual assistance system
Visual assistance system The wearable system uses intuitive multimodal feedback to assist visually impaired people with daily life tasks. (Courtesy: J Tang et al. Nature Machine Intelligence 10.1038/s42256-025-01018-6, 2005, Springer Nature)

Researchers from four universities in Shanghai, China, are developing a practical visual assistance system to help blind and partially sighted people navigate. The prototype system combines lightweight camera headgear, rapid-response AI-facilitated software and artificial “skins” worn on the wrists and finger that provide physiological sensing. Functionality testing suggests that the integration of visual, audio and haptic senses can create a wearable navigation system that overcomes current designs’ adoptability and usability concerns.

Worldwide, 43 million people are blind, according to 2021 estimates by the International Agency for the Prevention of Blindness. Millions more are so severely visually impaired that they require the use of a cane to navigate.

Visual assistance systems offer huge potential as navigation tools, but current designs have many drawbacks and challenges for potential users. These include limited functionality with respect to the size and weight of headgear, battery life and charging issues, slow real-time processing speeds, audio command overload, high system latency that can create safety concerns, and extensive and sometimes complex learning requirements.

Innovations in miniaturized computer hardware, battery charge longevity, AI-trained software to decrease latency in auditory commands, and the addition of lightweight wearable sensory augmentation material providing near-real-time haptic feedback are expected to make visual navigation assistance viable.

The team’s prototype visual assistance system, described in Nature Machine Intelligence, incorporates an RGB-D (red, green, blue, depth) camera mounted on a 3D-printed glasses frame, ultrathin artificial skins, a commercial lithium-ion battery, a wireless bone-conducting earphone and a virtual reality training platform interfaced via triboelectric smart insoles. The camera is connected to a microcontroller via USB, enabling all computations to be performed locally without the need for a remote server.

When a user sets a target using a voice command, AI algorithms process the RGB-D data to estimate the target’s orientation and determine an obstacle-free direction in real time. As the user begins to walk to the target, bone conduction earphones deliver spatialized cues to guide them, and the system updates the 3D scene in real time.

The system’s real-time visual recognition incorporates changes in distance and perspective, and can compensate for low ambient light and motion blur. To provide robust obstacle avoidance, it combines a global threshold method with a ground interval approach to accurately detect overhead hanging, ground-level and sunken obstacles, as well as sloping or irregular ground surfaces.

First author Jian Tang of Shanghai Jiao Tong University and colleagues tested three audio feedback approaches: spatialized cues, 3D sounds and verbal instructions. They determined that spatialized cues are the most rapid to convey and be understood and provide precise direction perception.

Real-world testing A visually impaired person navigates through a cluttered conference room. (Courtesy: Tang et al. Nature Machine Intelligence)

To complement the audio feedback, the researchers developed stretchable artificial skin – an integrated sensory-motor device that provides near-distance alerting. The core component is a compact time-of-flight sensor that vibrates to stimulate the skin when the distance to an obstacle or object is smaller than a predefined threshold. The actuator is designed as a slim, lightweight polyethylene terephthalate cantilever. A gap between the driving circuit and the skin promotes air circulation to improve skin comfort, breathability and long-term wearability, as well as facilitating actuator vibration.

Users wear the sensor on the back of an index or middle finger, while the actuator and driving circuit are worn on the wrist. When the artificial skin detects a lateral obstacle, it provides haptic feedback in just 18 ms.

The researchers tested the trained system in virtual and real-world environments, with both humanoid robots and 20 visually impaired individuals who had no prior experience of using visual assistance systems. Testing scenarios included walking to a target while avoiding a variety of obstacles and navigating through a maze. Participants’ navigation speed increased with training and proved comparable to walking with a cane. Users were also able to turn more smoothly and were more efficient at pathfinding when using the navigation system than when using a cane.

“The proficient completion of tasks mirroring real-world challenges underscores the system’s effectiveness in meeting real-life challenges,” the researchers write. “Overall, the system stands as a promising research prototype, setting the stage for the future advancement of wearable visual assistance.”

The post Visual assistance system helps blind people navigate appeared first on Physics World.

index.feed.received.before_yesterday6.5 📰 Sciences English

Universe may end much sooner than predicted, say theorists

20 mai 2025 à 18:28

The universe’s maximum lifespan may be considerably shorter than was previously thought, but don’t worry: there’s still plenty of time to finish streaming your favourite TV series.

According to new calculations by black hole expert Heino Falcke, quantum physicist Michael Wondrak, and mathematician Walter van Suijlekom of Radboud University in the Netherlands, the most persistent stellar objects in the universe – white dwarf stars – will decay away to nothingness in around 1078 years. This, Falcke admits, is “a very long time”, but it’s a far cry from previous predictions, which suggested that white dwarfs could persist for at least 101100 years. “The ultimate end of the universe comes much sooner than expected,” he says.

Writing in the Journal of Cosmology and Astroparticle Physics, Falcke and colleagues explain that the discrepancy stems from different assumptions about how white dwarfs decay. Previous calculations of their lifetime assumed that, in the absence of proton decay (which has never been observed experimentally), their main decay process would be something called pyconuclear fusion. This form of fusion occurs when nuclei in a crystalline lattice essentially vibrate their way into becoming fused with their nearest neighbours.

If that sounds a little unlikely, that’s because it is. However, in the dense, cold cores of white dwarf stars, and over stupendously long time periods, pyconuclear fusion happens often enough to gradually (very, very gradually) turn the white dwarf’s carbon into nickel, which then transmutes into iron by emitting a positron. The resulting iron-cored stars are known as black dwarfs, and some theories predict that they will eventually (very, very eventually) collapse into black holes. Depending on how massive they were to start with, the whole process takes between 101100‒1032 000 years.

An alternative mechanism

Those estimates, however, do not take into account an alternative decay mechanism known as Hawking radiation. First proposed in the early 1970s by Stephen Hawking and Jacob Bekenstein, Hawking radiation arises from fluctuations in the vacuum of spacetime. These fluctuations allow particle-antiparticle pairs to pop into existence by essentially “borrowing” energy from the vacuum for brief periods before the pairs recombine and annihilate.

If this pair production happens in the vicinity of a black hole, one particle in the pair may stray over the black hole’s event horizon before it can recombine. This leaves its partner free to carry away some of the “borrowed” energy as Hawking radiation. After an exceptionally long time – but, crucially, not as long as the time required to disappear a white dwarf via pyconuclear fusion – Hawking radiation will therefore cause black holes to dissipate.

The fate of life, the universe and everything?

But what about objects other than black holes? Well, in a previous work published in 2023, Falcke, Wondrak and van Suijlekom showed that a similar process can occur for any object that curves spacetime with its gravitational field, not just objects that have an event horizon. This means that white dwarfs, neutron stars, the Moon and even human beings can, in principle, evaporate away into nothingness via Hawking radiation – assuming that what the trio delicately call “other astrophysical evolution and decay channels” don’t get there first.

Based on this tongue-in-cheek assumption, the trio calculated that white dwarfs will dissipate in around 1078 years, while denser objects such as black holes and neutron stars will vanish in no more than 1067 years. Less dense objects such as humans, meanwhile, could persist for as long as 1090 years – albeit only in a vast, near-featureless spacetime devoid of anything that would make life worth living, or indeed possible.

While that might sound unrealistic as well as morbid, the trio’s calculations do have a somewhat practical goal. “By asking these kinds of questions and looking at extreme cases, we want to better understand the theory,” van Suijlekom says. “Perhaps one day, we [will] unravel the mystery of Hawking radiation.”

The post Universe may end much sooner than predicted, say theorists appeared first on Physics World.

❌