↩ Accueil

Vue normale

index.feed.received.today — 15 mai 20256.5 📰 Sciences English

Arabsat seeks Telesat Lightspeed capacity as Starlink expands into Saudi Arabia

15 mai 2025 à 00:29

Saudi Arabia's Arabsat signed a deal for broadband capacity from Telesat’s proposed low Earth orbit constellation, a day after SpaceX CEO Elon Musk announced approval to sell LEO services to maritime and aviation customers in the region.

The post Arabsat seeks Telesat Lightspeed capacity as Starlink expands into Saudi Arabia appeared first on SpaceNews.

index.feed.received.yesterday — 14 mai 20256.5 📰 Sciences English

This is what an aurora looks like on Mars

14 mai 2025 à 20:01

The Mars rover Perseverance has captured the first image of an aurora as seen from the surface of another planet. The visible-light image, which was taken during a solar storm on 18 March 2024, is not as detailed or as colourful as the high-resolution photos of green swirls, blue shadows and pink whorls familiar to aurora aficionados on Earth. Nevertheless, it shows the Martian sky with a distinctly greenish tinge, and the scientists who obtained it say that similar aurorae would likely be visible to future human explorers.

“Kind of like with aurora here on Earth, we need a good solar storm to induce a bright green colour, otherwise our eyes mostly pick up on a faint grey-ish light,” explains Elise Wright Knutsen, a postdoctoral researcher in the Centre for Space Sensors and Systems at the University of Oslo, Norway. The storm Knutsen and her colleagues captured was, she adds, “rather moderate”, and the aurora it produced was probably too faint to see with the naked eye. “But with a camera, or if the event had been more intense, the aurora will appear as a soft green glow covering more or less the whole sky.”

The role of planetary magnetic fields

Aurorae happen when charged particles from the Sun – the solar wind – interact with the magnetic field around a planet. On Earth, this magnetic field is the product of an internal, planetary-scale magnetic dynamo. Mars, however, lost its dynamo (and, with it, its oceans and its thick protective atmosphere) around four billion years ago, so its magnetic field is much weaker. Nevertheless, it retains some residual magnetization in its southern highlands, and its conductive ionosphere affects the shape of the nearby interplanetary magnetic field. Together, these two phenomena give Mars a hybrid magnetosphere too feeble to protect its surface from cosmic rays, but strong enough to generate an aurora.

Scientists had previously identified various types of aurorae on Mars (and every other planet with an atmosphere in our solar system) in data from orbiting spacecraft. However, no Mars rover had ever observed an aurora before, and all the orbital aurora observations, from Mars and elsewhere, were at ultraviolet wavelengths.

An artist's impression of what the aurora would have looked like. The image shows uneven terrain silhouetted against a greeish sky with several visible stars. The Perseverance rovers is in the foreground.
Awesome sight: An artist’s impression of the aurora and the Perseverance rover. (Courtesy: Alex McDougal-Page)

How to spot an aurora on Mars

According to Knutsen, the lack of visible-light, surface-based aurora observations has several causes. First, the visible-wavelength instruments on Mars rovers are generally designed to observe the planet’s bright “dayside”, not to detect faint emissions on its nightside. Second, rover missions focus primarily on geology, not astronomy. Finally, aurorae are fleeting, and there is too much demand for Perseverance’s instruments to leave them pointing at the sky just in case something interesting happens up there.

“We’ve spent a significant amount of time and effort improving our aurora forecasting abilities,” Knutsen says.

Getting the timing of observations right was the most challenging part, she adds. The clock started whenever solar satellites detected events called coronal mass ejections (CMEs) that create unusually strong pulses of solar wind. Next, researchers at the NASA Community Coordinated Modeling Center simulated how these pulses would propagate through the solar system. Once they posted the simulation results online, Knutsen and her colleagues – an international consortium of scientists in Belgium, France, Germany, the Netherlands, Spain, the UK and the US as well as Norway – had a decision to make. Was this CME likely to trigger an aurora bright enough for Perseverance to detect?

If the answer was “yes”, their next step was to request observation time on Perseverance’s SuperCam and Mastcam-Z instruments. Then they had to wait, knowing that although CMEs typically take three days to reach Mars, the simulations are only accurate to within a few hours and the forecast could change at any moment. Even if they got the timing right, the CME might be too weak to trigger an aurora.

“We have to pick the exact time to observe, the whole observation only lasts a few minutes, and we only get one chance to get it right per solar storm,” Knutsen says. “It took three unsuccessful attempts before we got everything right, but when we did, it appeared exactly as we had imagined it: as a diffuse green haze, uniform in all directions.”

Future observations

Writing in Science Advances, Knutsen and colleagues say it should now be possible to investigate how Martian aurorae vary in time and space – information which, they note, is “not easily obtained from orbit with current instrumentation”. They also point out that the visible-light instruments they used tend to be simpler and cheaper than UV ones.

“This discovery will open up new avenues for studying processes of particle transport and magnetosphere dynamics,” Knutsen tells Physics World. “So far we have only reported our very first detection of this green emission, but observations of aurora can tell us a lot about how the Sun’s particles are interacting with Mars’s magnetosphere and upper atmosphere.”

The post This is what an aurora looks like on Mars appeared first on Physics World.

Robert P Crease: ‘I’m yet another victim of the Trump administration’s incompetence’

14 mai 2025 à 16:00

Late on Friday 18 April, the provost of Stony Brook University, where I teach, received a standard letter from the National Science Foundation (NSF), the body that funds much academic research in the US. “Termination of certain awards is necessary,” the e-mail ran, “because they are not in alignment with current NSF priorities”. The e-mail mentioned “NSF Award Id 2318247”. Mine.

The termination notice, forwarded to me a few minutes later, was the same one that 400 other researchers all over the US received the same day, in which the agency, following a directive from the Trump administration, grabbed back $233m in grant money. According to the NSF website, projects terminated were “including but not limited to those on diversity, equity, and inclusion (DEI) and misinformation/disinformation”.

Losing grant money is disastrous for research and for the faculty, postdocs, graduate students and support staff who depend on that support. A friend of mine tried to console me by saying that I had earned a badge of honour for being among the 400 people who threatened the Trump Administration so much that it set out to stop their work. Still, I was baffled. Did I really deserve the axe?

My award, entitled “Social and political dynamics of lab-community relations”, was small potatoes. As the sole principal investigator, I’d hired no postdocs or grad students. I’d also finished most of the research and been given a “no-cost extension” to write it up that was due to expire in a few months. In fact, I’d spent all but $21,432 of the $263,266 of cash.

That may sound like a lot for a humanities researcher, but it barely covered a year of my salary and included indirect costs (to which my grant was subject like any other), along with travel and so on. What’s more, my project’s stated aim was to “enhance the effectiveness of national scientific facilities”, which was clearly within the NSF’s mission.

Such facilities, I had pointed out in my official proposal, are vital if the US is to fulfil its national scientific, technological, medical and educational goals. But friction between a facility and the surrounding community can hamper its work, particularly if the lab’s research is seen as threatening – for example, involving chemical, radiological or biological hazards. Some labs, in fact, have had important, yet perfectly safe, facilities permanently closed out of such fear.

“In an age of Big Science,” I argued, “understanding the dynamics of lab-community interaction is crucial to advancing national, scientific, and public interests.” What’s so contentious about that?

“New bad words”

Maybe I had been careless. After all, Ted Cruz, who chairs the Senate’s commerce committee, had claimed in February that 3400 NSF awards worth over $2 billion made during the Biden–Harris administration had promoted DEI and advanced “neo-Marxist class warfare propaganda”. I wondered if I might have inadvertently used some trigger word that outed me as an enemy of the state.

I knew, for instance, that the Trump Administration had marked for deletion photos of the Enola Gay aircraft, which had dropped an atomic bomb on Hiroshima, in a Defense Department database because officials had not realized that “Gay” was part of the name of the pilot’s mother. Administration officials had made similar misinterpretations in scientific proposals that included the words “biodiversity” and “transgenic”.

Had I used one of those “new bad words”? I ran a search on my proposal. Did it mention “equity”? No. “Inclusion”? Also no. The word “diversity” appeared only once, in the subtitle of an article in the bibliography about radiation fallout. “Neo-Marxist”? Again, no. Sure, I’d read Marx’s original texts during my graduate training in philosophy, but my NSF documents hadn’t tapped him or his followers as essential to my project.

Then I remembered a sentence in my proposal. “Well-established scientific findings,” I wrote, “have been rejected by activists and politicians, distorted by lurid headlines, and fuelled partisan agendas.” These lead in turn to “conspiracy theories, fake facts, science denial and charges of corruption”.

Was that it, I wondered? Had the NSF officials thought that I had meant to refer to the administration’s attacks on climate change science, vaccines, green energy and other issues? If so, that was outrageous! There was not a shred of truth to it – no truth at all!

Ructions and retractions

On 23 April – five days after the NSF termination notice – two researchers at Harvard University put together an online “Terminated NSF grant tracker”, which contained information based on what they found in the NSF database. Curious, I scrolled down to SUNY at Stony Brook and found mine: “Social and political dynamics of lab-community relations”.

I was shocked to discover that almost everything about it in the NSF database was wrong, including the abstract

I was shocked to discover that almost everything about it in the NSF database was wrong, including the abstract. The abstract given for my grant was apparently that of another NSF award, for a study that touched on DEI themes – a legitimate and useful thing to study under any normal regime, but not this one. At last, I had the reason for my grant termination: an NSF error.

The next day, 24 April, I managed to speak to the beleaguered NSF programme director, who was kind and understanding and said there’d been a mistake in the database. When I asked her if it could be fixed she said, “I don’t know”. When I asked her if the termination can be reversed, she said, “I don’t know”. I alerted Stony Brook’s grants-management office, which began to press the NSF to reverse its decision. A few hours later I learned that NSF director Sethuraman Panchanathan had resigned.

I briefly wondered if Panchanathan had been fired because my grant had been bungled. No such luck; he was probably disgusted with the administration’s treatment of the agency. But while the mistake over my abstract evidently wasn’t deliberate, the malice behind my grant’s termination certainly was. Further, doesn’t one routinely double-check before taking such an unprecedented and monumental step as terminating a grant by a major scientific agency?

I then felt guilty about my anger; who was I to complain? After all, some US agencies have been shockingly incompetent lately

I then felt guilty about my anger; who was I to complain? After all, some US agencies have been shockingly incompetent lately. A man was mistakenly sent by the Department of Homeland Security to a dangerous prison in El Salvador and they couldn’t (or wouldn’t) get him back. The Department of Health and Human Services has downplayed the value of vaccines, fuelling a measles epidemic in Texas, while defence secretary Pete Hegseth used the Signal messaging app to release classified military secrets regarding a war in progress to a journalist.

How narcissistic of me to become livid only when personally affected by termination of an award that’s almost over anyway.

A few days later, on 28 April, Stony Brook’s provost received another e-mail about my grant from the NSF. Forwarded to me, it said: “the termination notice is retracted; NSF terminated this project in error”. Since then, the online documents at the NSF, and the information about my grant in the tracker, have thankfully been corrected.

The critical point

In a few years’ time, I’ll put together another proposal to study the difference between the way that US government handles science and the needs of its citizens. I’ll certainly have a lot more material to draw on. Meanwhile, I’ll reluctantly wear my badge of honour. For I deserve it – though not, as I initially thought, because I had threatened the Trump Administration enough that they tried to halt my research.

I got it simply because I’m yet another victim of the Trump Administration’s incompetence.

The post Robert P Crease: ‘I’m yet another victim of the Trump administration’s incompetence’ appeared first on Physics World.

Plasma physics sets upper limit on the strength of ‘dark electromagnetism’

14 mai 2025 à 15:00

Physicists have set a new upper bound on the interaction strength of dark matter by simulating the collision of two clouds of interstellar plasma. The result, from researchers at Ruhr University Bochum in Germany, CINECA in Italy and the Instituto Superior Tecnico in Portugal, could force a rethink on theories describing this mysterious substance, which is thought to make up more than 85% of the mass in the universe.

Since dark matter has only ever been observed through its effect on gravity, we know very little about what it’s made of. Indeed, various theories predict that dark matter particles could have masses ranging from around 10−22 eV to around 1019 GeV — a staggering 50 orders of magnitude.

Another major unknown about dark matter is whether it interacts via forces other than gravity, either with itself or with other particles. Some physicists have hypothesized that dark matter particles might possess positive and negative “dark charges” that interact with each other via “dark electromagnetic forces”. According to this supposition, dark matter could behave like a cold plasma of self-interacting particles.

Bullet Cluster experiment

In the new study, the team searched for evidence of dark interactions in a cluster of galaxies located several billion light years from Earth. This galactic grouping is known as the Bullet Cluster, and it contains a subcluster that is moving away from the main body after passing through it at high speed.

Since the most basic model of dark-matter interactions relies on the same equations as ordinary electromagnetism, the researchers chose to simulate these interactions in the Bullet Cluster system using the same computational tools they would use to describe electromagnetic interactions in a standard plasma. They then compared their results with real observations of the Bullet Cluster galaxy.

A graph of the dark electromagnetic coupling constant 𝛼𝐷 as a function of the dark matter mass 𝑚𝐷. There is a blue triangle in the upper left corner of the graph, a wide green region below it running from the bottom left to the top right, and a thin red strip below that. A white triangle at the bottom right of the graph represents a region not disallowed by the measurements.
Interaction strength: Constraints on the dark electromagnetic coupling constant 𝛼𝐷 based on observations from the Bullet Cluster. 𝛼𝐷 must lie below the blue, green and red regions. Dashed lines show the reference value used for the mass of 1 TeV. (Courtesy: K Schoefler et al., “Can plasma physics establish a significant bound on long-range dark matter interactions?” Phys Rev D 111 L071701, https://doi.org/10.1103/PhysRevD.111.L071701)

The new work builds on a previous study in which members of the same team simulated the collision of two clouds of standard plasma passing through one another. This study found that as the clouds merged, electromagnetic instabilities developed. These instabilities had the effect of redistributing energy from the opposing flows of the clouds, slowing them down while also broadening the temperature range within them.

Ruling out many of the simplest dark matter theories

The latest study showed that, as expected, the plasma components of the subcluster and main body slowed down thanks to ordinary electromagnetic interactions. That, however, appeared to be all that happened, as the data contained no sign of additional dark interactions. While the team’s finding doesn’t rule out dark electromagnetic interactions entirely, team member Kevin Schoeffler explains that it does mean that these interactions, which are characterized by a parameter known as 𝛼𝐷, must be far weaker than their ordinary-matter counterpart. “We can thus calculate an upper limit for the strength of this interaction,” he says.

This limit, which the team calculated as 𝛼𝐷 < 4 x 10-25 for a dark matter particle with a mass of 1 TeV, rules out many of the simplest dark matter theories and will require them to be rethought, Schoeffler says. “The calculations were made possible thanks to detailed discussions with scientists working outside of our speciality of physics, namely plasma physicists,” he tells Physics World. “Throughout this work, we had to overcome the challenge of connecting with very different fields and interacting with communities that speak an entirely different language to ours.”

As for future work, the physicists plan to compare the results of their simulations with other astronomical observations, with the aim of constraining the upper limit of the dark electromagnetic interaction even further. More advanced calculations, such as those that include finer details of the cloud models, would also help refine the limit. “These more realistic setups would include other plasma-like electromagnetic scenarios and ‘slowdown’ mechanisms, leading to potentially stronger limits,” Schoeffler says.

The present study is detailed in Physical Review D.

The post Plasma physics sets upper limit on the strength of ‘dark electromagnetism’ appeared first on Physics World.

Quantum effect could tame noisy nanoparticles by rendering them invisible

14 mai 2025 à 10:00

In the quantum world, observing a particle is not a passive act. If you shine light on a quantum object to measure its position, photons scatter off it and disturb its motion. This disturbance is known as quantum backaction noise, and it limits how precisely physicists can observe or control delicate quantum systems.

Physicists at Swansea University have now proposed a technique that could eliminate quantum backaction noise in optical traps, allowing a particle to remain suspended in space undisturbed. This would bring substantial benefits for quantum sensors, as the amount of noise in a system determines how precisely a sensor can measure forces such as gravity; detect as-yet-unseen interactions between gravity and quantum mechanics; and perhaps even search for evidence of dark matter.

There’s just one catch: for the technique to work, the particle needs to become invisible.

Levitating nanoparticles

Backaction noise is a particular challenge in the field of levitated optomechanics, where physicists seek to trap nanoparticles using light from lasers. “When you levitate an object, the whole thing moves in space and there’s no bending or stress, and the motion is very pure,” explains James Millen, a quantum physicist who studies levitated nanoparticles at Kings College, London, UK. “That’s why we are using them to detect crazy stuff like dark matter.”

While some noise is generally unavoidable, Millen adds that there is a “sweet spot” called the Heisenberg limit. “This is where you have exactly the right amount of measurement power to measure the position optimally while causing the least noise,” he explains.

The problem is that laser beams powerful enough to suspend a nanoparticle tend to push the system away from the Heisenberg limit, producing an increase in backaction noise.

Blocking information flow

The Swansea team’s method avoids this problem by, in effect, blocking the flow of information from the trapped nanoparticle. Its proposed setup uses a standing-wave laser to trap a nanoparticle in space with a hemispherical mirror placed around it. When the mirror has a specific radius, the scattered light from the particle and its reflection interfere so that the outgoing field no longer encodes any information about the particle’s position.

At this point, the particle is effectively invisible to the observer, with an interesting consequence: because the scattered light carries no usable information about the particle’s location, quantum backaction disappears. “I was initially convinced that we wanted to suppress the scatter,” team leader James Bateman tells Physics World. “After rigorous calculation, we arrived at the correct and surprising answer: we need to enhance the scatter.”

In fact, when scattering radiation is at its highest, the team calculated that the noise should disappear entirely. “Even though the particle shines brighter than it would in free space, we cannot tell in which direction it moves,” says Rafał Gajewski, a postdoctoral researcher at Swansea and Bateman’s co-author on a paper in Physical Review Research describing the technique.

Gajewski and Bateman’s result flips a core principle of quantum mechanics on its head. While it’s well known that measuring a quantum system disturbs it, the reverse is also true: if no information can be extracted, then no disturbance occurs, even when photons continuously bombard the particle. If physicists do need to gain information about the trapped nanoparticle, they can use a different, lower-energy laser to make their measurements, allowing experiments to be conducted at the Heisenberg limit with minimal noise.

Putting it into practice

For the method to work experimentally, the team say the mirror needs a high-quality surface and a radius that is stable with temperature changes. “Both requirements are challenging, but this level of control has been demonstrated and is achievable,” Gajewski says.

Positioning the particle precisely at the center of the hemisphere will be a further challenge, he adds, while the “disappearing” effect depends on the mirror’s reflectivity at the laser wavelength. The team is currently investigating potential solutions to both issues.

If demonstrated experimentally, the team says the technique could pave the way for quieter, more precise experiments and unlock a new generation of ultra-sensitive quantum sensors. Millen, who was not involved in the work, agrees. “I think the method used in this paper could possibly preserve quantum states in these particles, which would be very interesting,” he says.

Because nanoparticles are far more massive than atoms, Millen adds, they interact more strongly with gravity, making them ideal candidates for testing whether gravity follows the strange rules of quantum theory.  “Quantum gravity – that’s like the holy grail in physics!” he says.

The post Quantum effect could tame noisy nanoparticles by rendering them invisible appeared first on Physics World.

index.feed.received.before_yesterday6.5 📰 Sciences English

Delta.g wins IOP’s qBIG prize for its gravity sensors

13 mai 2025 à 19:00

The UK-based company Delta.g has bagged the 2025 qBIG prize, which is awarded by the Institute of Physics (IOP). Initiated in 2023, qBIG celebrates and promotes the innovation and commercialization of quantum technologies in the UK and Ireland.

Based in Birmingham, Delta.g makes quantum sensors that measure the local gravity gradient. This is done using atom interferometry, whereby laser pulses are fired at a cloud of cold atoms that is freefalling under gravity.

On the Earth’s surface, this gradient is sensitive to the presence of buildings and underground voids such as tunnels. The technology was developed by physicists at the University of Birmingham and in 2022 they showed how it could be used to map out a tunnel below a road on campus. The system has also been deployed in a cave and on a ship to test its suitability for use in navigation.

Challenging to measure

“Gravity is a fundamental force, yet its full potential remains largely untapped because it is so challenging to measure,” explains Andrew Lamb who is co-founder and chief technology officer at Delta.g. “As the first to take quantum technology gravity gradiometry from the lab to the field, we have set a new benchmark for high-integrity, noise-resistant data transforming how we understand and navigate the subsurface.”

Awarded by the IOP, the qBIG prize is sponsored by Quantum Exponential, which is the UK’s first enterprise venture capital fund focused on quantum technology. The winner was announced today at the Economist’s Commercialising Quantum Global 2025 event in London. Delta.g receives a £10,000 unrestricted cash prize; 10 months of mentoring from Quantum Exponential; and business support from the IOP.

Louis Barson, the IOP’s director of science, innovation and skills says, “The IOP’s role as UK and Ireland coordinator of the International Year of Quantum 2025 gives us a unique opportunity to showcase the exciting developments in the quantum sector. Huge congratulations must go to the Delta.g team, whose incredible work stood out in a diverse and fast-moving field.”

Two runners-up were commended by the IOP. One is Glasgow-based  Neuranics, which makes quantum sensors that detect tiny magnetic signals from the human body. This other is Southampton’s Smith Optical, which makes an augmented-reality display based on quantum technology.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

 

The post Delta.g wins IOP’s qBIG prize for its gravity sensors appeared first on Physics World.

Electrolysis workstation incorporates mass spectrometry to accelerate carbon-dioxide reduction research

13 mai 2025 à 15:59

The electrochemical reduction of carbon dioxide is used to produce a range of chemical and energy feedstocks including syngas (hydrogen and carbon monoxide), formic acid, methane and ethylene. As well as being an important industrial process, the large-scale reduction of carbon dioxide by electrolysis offers a practical way to capture and utilize carbon dioxide.

As a result, developing new and improved electrochemical processes for carbon-dioxide reduction is an important R&D activity. This work involves identifying which catalyst and electrolyte materials are optimal for efficient production. And when a promising electrochemical system is identified in the lab, the work is not over because the design must be then scaled up to create an efficient and practical industrial process.

Such R&D activities must overcome several challenges in operating and characterizing potential electrochemical systems. These include maintaining the correct humidification of carbon-dioxide gas during the electrolysis process and minimizing the production of carbonates – which can clog membranes and disrupt electrolysis.

While these challenges can be daunting, they can be overcome using the 670 Electrolysis Workstation from US-based Scribner. This is a general-purpose electrolysis system designed to test the materials used in the conversion of electrical energy to fuels and chemical feedstocks – and it is ideal for developing systems for carbon-dioxide reduction.

Turn-key and customizable

The workstation is a flexible system that is both turn-key and customizable. Liquid and gas reactants can be used on one or both of the workstation’s electrodes. Scribner has equipped the 670 Electrolysis Workstation with cells that feature gas diffusion electrodes and membranes from US-based Dioxide Materials. The company specializes in the development of technologies for converting carbon dioxide into fuels and chemicals, and it was chosen by Scribner because Dioxide Materials’ products are well documented in the scientific literature.

The gas diffusion electrodes are porous graphite cathodes through which carbon-dioxide gas flows between input and output ports. The gas can migrate from the graphite into a layer containing a metal catalyst. Membranes are used in electrolysis cells to ensure that only the desired ions are able to migrate across the cell, while blocking the movement of gases.

Jarrett and Luke in the lab
Fully integrated Scribner’s Jarrett Mansergh (left) and Luke Levin-Pompetzki of Hiden Analytical in Scribner’s lab after integrating the electrolysis and mass-spectrometry systems. (Courtesy: Scribner)

The system employs a multi-range  ±20 A and 5 V potentiostat for high-accuracy operation over a wide range of reaction rates and cell sizes. The workstation is controlled by Scribner’s FlowCell™ software, which provides full control and monitoring of test cells and comes pre-loaded with a wide range of experimental protocols. This includes electrochemical impedance spectroscopy (EIS) capabilities up to 20 KHz and cyclic voltammetry protocols – both of which are used to characterize the health and performance of electrochemical systems. FlowCell™ also allows users to set up long duration experiments while providing safety monitoring with alarm settings for the purging of gases.

Humidified gas

The 670 Electrolysis Workstation features a gas handling unit that can supply humidified gas to test cells. Adding water vapour to the carbon-dioxide reactant is crucial because the water provides the protons that are needed to convert carbon dioxide to products such as methane and syngas. Humidifying gas is very difficult and getting it wrong leads to unwanted condensation in the system. The 670 Electrolysis Workstation uses temperature control to minimize condensation. The same degree of control can be difficult to achieve in homemade systems, leading to failure.

The workstation offers electrochemical cells with 5 cm2 and 25 cm2 active areas. These can be used to build carbon-dioxide reduction cells using a range of materials, catalysts and membranes – allowing the performance of these prototype cells to be thoroughly evaluated. By studying cells at these two different sizes, researchers can scale up their electrochemical systems from a preliminary experiment to something that is closer in size to an industrial system. This makes the 670 Electrolysis Workstation ideal for use across university labs, start-up companies and corporate R&D labs.

The workstation can handle, acids, bases and organic solutions. For carbon-dioxide reduction, the cell is operated with a liquid electrolyte on the positive electrode (anode) and gaseous carbon dioxide at the negative electrode (cathode). An electric potential is applied across the electrodes and the product gas comes off the cathode side.

The specific product is largely dependent on the catalyst used at the cathode. If a silver catalyst is used for example, the cell is likely to produce the syngas. If a tin catalyst is used, the product is more likely to be formic acid.

Mass spectrometry

The best way to ensure that the desired products are being made in the cell is to connect the gas output to a mass spectrometer. As a result, Scribner has joined forces with Hiden Analytical to integrate the UK-based company’s HPR-20 mass spectrometer for gas analysis. The Hiden system is specifically configured to perform continuous analysis of evolved gases and vapours from the 670 Electrolysis Workstation.

CO2 reduction cell feature
The Scribner CO2 Reduction Cell Fixture (Courtesy: Scribner)

If a cell is designed to create syngas, for example, the mass spectrometer will determine exactly how much carbon monoxide is being produced and how much hydrogen is being produced. At the same time, researchers can monitor the electrochemical properties of the cell. This allows researchers to study relationships between a system’s electrical performance and the chemical species that it produces.

Monitoring gas output is crucial for optimizing electrochemical processes that minimize negative effects such as the production of carbonates, which is a significant problem when doing carbon dioxide reduction.

In electrochemical cells, carbon dioxide is dissolved in a basic solution. This results in the precipitation of carbonate salts that clog up the membranes in cells, greatly reducing performance. This is a significant problem when scaling up cell designs for industrial use because commercial cells must be very long-lived.

Pulsed-mode operation

One strategy for dealing with carbonates is to operate electrochemical cells in pulsed mode, rather than in a steady state. The off time allows the carbonates to migrate away from electrodes, which minimizes clogging. The 670 Electrolysis Workstation allows users to explore the use of short, second-scale pulses. Another option that researchers can explore is the use of pulses of fresh water to flush carbonates away from the cathode area. These and other options are available in a set of pre-programmed experiments that allow users to explore the mitigation of salt formation in their electrochemical cells.

The gaseous products of these carbonate-mitigation modes can be monitored in real time using Hiden’s mass spectrometer. This allows researchers to identify any changes in cell performance that are related to pulsed operation. Currently, electrochemical and product characteristics can be observed on time scales as short as 100 ms. This allows researchers to fine-tune how pulses are applied to minimize carbonate production and maximize the production of desired gases.

Real-time monitoring of product gases is also important when using EIS to observe the degradation of the electrochemical performance of a cell over time. This provides researchers with a fuller picture of what is happening in a cell as it ages.

The integration of Hiden’s mass spectrometer to the 670 Electrolysis Workstation is the latest innovation from Scribner. Now, the company is working on improving the time resolution of the system so that even shorter pulse durations can be studied by users. The company is also working on boosting the maximum current of the 670 to 100 A.

The post Electrolysis workstation incorporates mass spectrometry to accelerate carbon-dioxide reduction research appeared first on Physics World.

❌