↩ Accueil

Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
Hier — 31 janvier 20256.5 📰 Sciences English

PLANCKS physics quiz – the solutions

Par : No Author
31 janvier 2025 à 12:00

Question 1: 4D Sun

Imagine you have been transported to another universe with four spatial dimensions. What would the colour of the Sun be in this four-dimensional universe? You may assume that the surface temperature of the Sun is the same as in our universe and is approximately T = 6 × 103 K. [10 marks]

Boltzmann constant, kB = 1.38 × 10−23 J K−1

Speed of light, c = 3 × 108 m s−1

Solution

Black body radiation, spectral density: ε (ν) dν = ρ (ν) n (ν)

The photon energy, E = where h is Planck’s constant and ν is the photon frequency.

The density of states, ρ (ν) = n−1 where A is a constant independent of the frequency and the frequency term is the scaling of surface area of an n-dimensional sphere.

The Bose–Einstein distribution,

n(v)=1ehvkT1

where k is the Boltzmann constant and T is the temperature.

We let

x=hvkT

and get

ε(x)=xnex1

We do not need the constant of proportionality (which is not simple to calculate in 4D) to find the maximum of ε (x). Working out the constant just tells us how tall the peak is, but we are interested in where the peak is, not the total radiation.

dεdxnxn1ex1xnexex12

We set this equal to zero for the maximum of the distribution,

xn1exex12n1exx=0

This yields x = n (1 − ex) where

x=hvmaxkT

and we can relate

λmax=cvmax

and c being the speed of light.

This equation has the solution x = n +W (−ne−n) where W is the Lambert W function z = W (y) that solves zez = y (although there is a subtlety about which branch of the function). This is kind of useless to do anything with, though. One can numerically solve this equation using bisection/Newton–Raphson/iteration. Alternatively, one could notice that as the number of dimensions increases, e−x is small, so to leading approximation xn. One can do a little better iterating this, xnne−n which is what we will use. Note the second iteration yields

xnnennen

Number of dimensions, n Numerical solution Approximation
2 1.594 1.729
3 2.821 2.851
4 (the one we want) 3.921 3.927
5 4.965 4.966
6 5.985 5.985

Using the result above,

λmax=hckTxmax=6.63 ×1034·3×1081.38×1023·6×103·3.9=616 nm

616 nm is middle of the spectrum, so it will look white with a green-blue tint. Note, we have used T = 6000 K for the temperature here, as given in the question.

It would also be valid to look at ε (λ) dλ instead of ε (ν) .

Question 2: Heavy stuff

In a parallel universe, two point masses, each of 1 kg, start at rest a distance of 1 m apart. The only force on them is their mutual gravitational attraction, F = –Gm1m2/r2. If it takes 26 hours and 42 minutes for the two masses to meet in the middle, calculate the value of the gravitational constant G in this universe. [10 marks]

Solution

First we will set up the equations of motion for our system. We will set one mass to be at position −x and the other to be at x, so the masses are at a distance of 2x from each other. Starting from Newton’s law of gravity:

F=Gm22x2

we can then use Newton’s second law to rewrite the LHS,

mx¨=Gm24x2

which we can simplify to

x¨=Gm4x2

It is important that you get the right factor here depending on your choice for the particle coordinates at the start. Note there are other methods of getting this point, e.g. reduced mass.

We can now solve the second order ODE above. We will not show the whole process here but present the starting point and key results. We can write the acceleration in terms of the velocity. The initial velocity is zero and the initial position

xi=d2

So,

vdvdx=Gm4x20vvdv=Gm4xixdxx2

and once the integrals are solved we can rearrange for the velocity,

v=dxdt=Gm21x1xi

Now we can form an expression for the total time taken for the masses to meet in the middle,

T=2Gm0xidx1x1xi

There are quite a few steps involved in solving this integral, for these solutions, we shall make use of the following (but do attempt to solve it for yourselves in full).

01y1ydy=sin11=π2

Hence,

T=π22xi3Gm=π2d34Gm

We can now rearrange for G and substitute in the values given in the question, don’t forget to convert the time into seconds.

G=d34mπ2T2=6.67×1011 m3kg1s2

This is the generally accepted value for the gravitational constant of our universe as well.

Question 3: Just like clockwork

Consider a pendulum clock that is accurate on the Earth’s surface. Figure 1 shows a simplified view of this mechanism.

Simplified schematic of a pendulum clock mechanism
1 Tick tock Simplified schematic of a pendulum clock mechanism. When the pendulum swings one way (a), the escapement releases the gear attached to the hanging mass and allows it to fall. When the pendulum swings the other way (b) the escapement stops the gear attached to the mass moving so the mass stays in place. (Courtesy: Katherine Skipper/IOP Publishing)

A pendulum clock runs on the gravitational potential energy from a hanging mass (1). The other components of the clock mechanism regulate the speed at which the mass falls so that it releases its gravitational potential energy over the course of a day. This is achieved using a swinging pendulum of length l (2), whose period is given by

T=2πlg

where g is the acceleration due to gravity.

Each time the pendulum swings, it rocks a mechanism called an “escapement” (3). When the escapement moves, the gear attached to the mass (4) is released. The mass falls freely until the pendulum swings back and the escapement catches the gear again. The motion of the falling mass transfers energy to the escapement, which gives a “kick” to the pendulum that keeps it moving throughout the day.

Radius of the Earth, R = 6.3781 × 106 m

Period of one Earth day, τ0 = 8.64 × 104 s

How slow will the clock be over the course of a day if it is lifted to the hundredth floor of a skyscraper? Assume the height of each storey is 3 m. [4 marks]

Solution

We will write the period of oscillation of the pendulum at the surface of the Earth to be

T0=2πlg0.

At a height h above the surface of the Earth the period of oscillation will be

Th=2πlgh,

where g0 and gh are the acceleration due to gravity at the surface of the Earth and a height h above it respectively.

We can define τ0 to be the total duration of the day which is 8.64 × 104 seconds and equal to N complete oscillations of the pendulum at the surface. The lag is then τh which will equal N times the difference in one period of the two clocks, τh = NΔT, where ΔT = (ThT0). We can now take a ratio of the lag over the day and the total duration of the day:

τhτ0=NThT0NT0τh=τ0ThT0T0=τh=τ0ThT01

Then by substituting in the expressions we have for the period of a pendulum at the surface and height h we can write this in terms of the gravitational constant,

τh=τ0g0gh1

[Award 1 mark for finding the ratio of the lag over the day and the total period of the day.]

The acceleration due to gravity at the Earth’s surface is

g0=GMR2

where G is the universal gravitational constant, M is the mass of the Earth and R is the radius of the Earth. At an altitude h, it will be

gh=GMR+h2

[Award 1 mark for finding the expression for the acceleration due to gravity at height h.]

Substituting into our expression for the lag, we get:

τh=τ0R+h2R21=τ01+2hR+h2R21=τ0R2+2hR+h2R1=τ0R+hR1

This simplifies to an expression for the lag over a day. We can then substitute in the given values to find,

τh=τ0hR=8.64×104 s·300 m8.3781×106 m =4.064 s4 s

[Award 2 marks for completing the simplification of the ratio and finding the lag to be ≈ 4 s.]

Question 4: Quantum stick

Imagine an infinitely thin stick of length 1 m and mass 1 kg that is balanced on its end. Classically this is an unstable equilibrium, although the stick will stay there forever if it is perfectly balanced. However, in quantum mechanics there is no such thing as perfectly balanced due to the uncertainty principle – you cannot have the stick perfectly upright and not moving at the same time. One could argue that the quantum mechanical effects of the uncertainty principle on the system are overpowered by others, such as air molecules and photons hitting it or the thermal excitation of the stick. Therefore, to investigate we would need ideal conditions such as a dark vacuum, and cooling to a few milli­kelvins, so the stick is in its ground state.

Moment of inertia for a rod,

I=13ml2

where m is the mass and l is the length.

Uncertainty principle,

ΔxΔp2

There are several possible approximations and simplifications you could make in solving this problem, including:

sinθ ≈ θ for small θ

cosh1x=ln x+x21

and

sinh1x=ln x+x2+1

Calculate the maximum time it would take such a stick to fall over and hit the ground if it is placed in a state compatible with the uncertainty principle. Assume that you are on the Earth’s surface. [10 marks]

Hint: Consider the two possible initial conditions that arise from the uncertainty principle.

Solution

We can imagine this as an inverted pendulum, with gravity acting from the centre of mass l2 and at an angle θ from the unstable equilibrium point.

[Award 1 mark for a suitable diagram of the system.]

We must now find the equations of motion of the system. For this we can use Newton’s second law F=ma in its rotational form τ = Iα (torque = moment of inertia × angular acceleration). We have another equation for torque we can use as well

τ=r×F=rFsinθn^

where r is the distance from the pivot to the centre of mass l2 and F is the force, which in this case is gravity mg. We can then equate these giving

rFsinθ=Iα

Substituting in the given moment of inertia of the stick and that the angular acceleration

α=δ2θδt2=θ¨

We can cancel a few things and rearrange to get a differential equation of the form:

θ¨3g2lsinθ=0

we then can take the small angle approximation sin θ ≈ θ, resulting in

θ¨3g2lθ=0

[Award 2 marks for finding the equation of motion for the system and using the small angle approximation.]

Solve with ansatz of θ = Aeωt + Be−ωt, where we have chosen

ω2=3g2l

We can clearly see that this will satisfy the differential equation

θ˙=ωAeωtωBeωt and θ¨=ω2Aeωt+ω2Beωt

Now we can apply initial conditions to find A and B, by looking at the two cases from the uncertainty principle

ΔxΔp=ΔxmΔv2

Case 1: The stick is at an angle but not moving

At t = 0, θ = Δθ

θ = Δθ = A + B

At t = 0, θ˙=0

θ˙=0=ωAeω0ωBeω0 , A=B

This implies Δθ = 2A and we can then find

A=Δθ2=2Δx2l=Δxl

So we can now write

θ=Aeωteωt=Δvωeωteωt or θ=2Δvωlsinh ωt

Case 2: The stick is at upright but moving

At t = 0, θ = 0

This condition gives us A = −B.

At t = 0, θ¨=2vl

This initial condition has come from the relationship between the tangential velocity, Δv which equals the distance to the centre of mass from the pivot point, l2 and the angular velocity θ˙. Using the above initial condition gives us θ˙=2ωA where A=Δvωl

We can now write

θ=Aeωteωt=Δvωeωteωt or θ=2Δvωlsinh ωt

[Award 4 marks for finding the two expressions for θ by using the two cases of the uncertainty principle.]

Now there are a few ways we can finish off this problem, we shall look at three different ways. In each case when the stick has fallen on the ground θtf=π2.

Method 1

Take θ=2Δxlcosh ωt and θ=2Δvωlsinh ωt, use θtf=π2 then rearrange for tf in both cases. We have

tf=1ωcosh1πl4Δx and tf=1ωsinh1πωl4Δv

Look at the expression for cosh−1 x and sinh−1 x given in the question. They are almost identical, we can then approximate the two arguments to each other and we find,

Δx=Δvω

we can then substitute in the uncertainty principle ΔxΔp=2 as Δv=2mδx and then write an expression of Δx=2mω, which we can put back into our arccosh expression (or do it for Δv and put into arcsinh).

tf=1ωcosh1πl4Δx

where Δx=2mω and ω=3g2l.

Method 2

In this next method, when you get to the inverse hyperbolic functions, you can take an expansion of their natural log forms in the tending to infinity limit. To first order both functions give ln 2x, we can then equate the arguments and find Δx or Δv in terms of the other and use the uncertainty principle. This would give the time taken as,

tf=1ωlnπl2Δx

where Δx=2mω and ω=3g2l.

Method 3

Rather than using hyperbolic functions, you could do something like above and do an expansion of the exponentials in the two expressions for tf or we could make life even easier and do the following.

Disregard the e−ωt terms as they will be much smaller than the eωt terms. Equate the two expressions for θtf=π2 and then take the natural logs, once again arriving at an expression of

tf=1ωlnπl2Δx

where Δx=2mω and ω=3g2l.

This method efficiently sets B = 0 when applying the initial conditions.

[Award 2 marks for reaching an expression for t using one of the methods above or a suitable alternative that gives the correct units for time.]

Then, by using one of the expressions above for time, substitute in the values and find that t = 10.58 seconds.

[Award 1 mark for finding the correct time value of t = 10.58 seconds.]

  • If you’re a student who wants to sign up for the 2025 edition of PLANCKS UK and Ireland, entries are now open at plancks.uk

The post PLANCKS physics quiz – the solutions appeared first on Physics World.

À partir d’avant-hier6.5 📰 Sciences English

Mark Thomson looks to the future of CERN and particle physics

30 janvier 2025 à 15:27

This episode of the Physics World Weekly podcast features Mark Thomson, who will become the next director-general of CERN in January 2026. In a conversation with Physics World’s Michael Banks, Thomson shares his vision of the future of the world’s preeminent particle physics lab, which is home to the Large Hadron Collider (LHC).

They chat about the upcoming high-luminosity upgrade to the LHC (HL-LHC), which will be completed in 2030. The interview explores long-term strategies for particle physics research and the challenges of managing large international scientific organizations. Thomson also looks back on his career in particle physics and his involvement with some of the field’s biggest experiments.

 

 

This podcast is supported by Atlas Technologies, specialists in custom aluminium and titanium vacuum chambers as well as bonded bimetal flanges and fittings used everywhere from physics labs to semiconductor fabs.

The post Mark Thomson looks to the future of CERN and particle physics appeared first on Physics World.

❌
❌